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ABSTRACT

A common exercise encountered while studying analysis is to decompose a certain object
in terms of a given basis. In particular, we focus on the representation of a given function
f ∈ L2[a, b] by an infinite series involving functions from a certain basis of the function
space. The idea of representations by series are often encountered while modelling and
solving boundary value problems in ordinary and partial differential equations. To begin
with, we discuss representations by Fourier series, which are certain types of infinite series
constituting multi-angle sinusoidals. In Chapter 1, we present some theory on Fourier
series, discuss its convergence and also go through some important numerical aspects of
Fourier series approximations.

Once it is established that the set of multi-angle sinusoidals, i.e.,

F = {1, sinnx, cosnx | for n running over N},

building blocks of a Fourier series, forms a basis of L2[−π, π], we see Fourier series from
the perspective of regular SL systems. Note that, F constitutes eigenfunctions of a
regular SL system. Hence, gradually in Chapter 2 we study the theory of Sturm-Liouville
systems, in an attempt to generalise the concept of a Fourier series to an SL series.
While the beginning of Chapter 2 mainly discusses types of SL systems and some results
on eigenfunctions of SL systems, the main crux of it is to present the Oscillation Theory.

The discussion is then naturally carried forward in Chapter 3, where first of all existence
of a sequence of eigenfunctions of any regular SL system is presented. Chapter 3 then
discusses some theory on the asymptotic behaviour of eigenfunctions and distributions
of eigenvalues of regular SL systems, eventually leading to establish the completeness of
the set of eigenfunctions in the function space L2

ρ(x)[a, b].

Next, in Chapter 4, we broaden our persepective of looking at SL series approximations
and hence consider concepts from approximation theory. For instance, one can formulate
and present a suitable approximation problem keeping in mind the associated geometrical
properties of a Fourier series approximation. Similarly from an application point of view,
there exists important approximation problems which are solved by Chebyshev Polyno-
mials. Finally, we present numerical methods for performing Chebyshev approximations
efficiently. At a glimpse, unlike the numerical experiments on Fourier series approxi-
mations where the coefficients were computed using numerical integration, we discuss
discrete computation of coefficients in Chebyshev series and fast numerical evaluation of
Chebyshev series.
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CHAPTER 1: FOURIER SERIES

1.1 Introduction

The genesis of Fourier analysis, dating back to the 19th century, marks a watershed mo-
ment in scientific inquiry. Pioneered by Jean-Baptiste Joseph Fourier in his quest to un-
derstand heat conduction[14], this concept revealed that complicated functions involved
in certain periodic physical phenomena could be deconstructed into simpler sinusoidal
components. Today, Fourier analysis stands as an enduring pillar of scientific investiga-
tion, serving as a vital tool in deciphering intricate signals and waves across a diverse
array of disciplines[24],[6],[10]. In this chapter, we discuss some elementary results which
are naturally encountered while developing the foundational concepts of Fourier analysis.

Definition 1.1.1. For a given function f , we can associate it with an infinite series of
sinusoids. Whenever

f(x) = A0+a1 cos(x) + a2 cos(2x) + · · ·
+b1 sin(x) + b2 sin(2x) + · · · (1)

such a series is called a Fourier Series.

Under some hypotheses of considerable generality on the function f , this sinusoidal infi-
nite series can represent f . We define a constant p to be a period for a function ϕ(x), if
ϕ(x + p) = ϕ(x). Note that, our definition for a period remains the same even though p
may not be the smallest value for which a relation of this sort is satisfied.

1.2 Orthogonality of Sines and Cosines

Firstly, for non-zero integer n, we observe the following definite integrals:∫ π

−π

cos(nx) = 0,

∫ π

−π

sin(nx) = 0 (2)

Here, the second equation holds true even if n = 0, while in the second equation the
right-hand side value becomes 2π for n = 0.

Throughout the discussions ahead, we consider p and q to be non-negative integers. Using
the relation cos(px) · cos(qx) = 1

2
cos((p− q)x) + 1

2
cos((p+ q)x) and the relations at (2),

we get: ∫ π

−π

cos(px) · cos(qx)dx = 0, when p ̸= q. (3)

Even if p = q ̸= 0, the integral of cos((p + q)x) over the period interval is zero, and the
other term gives us: ∫ π

−π

cos2(px) = π.

1



Similarly, the following identities:

sin(px) · sin(qx) = 1

2
cos((p− q)x)− 1

2
cos((p+ q)x),

sin(px) · cos(qx) = 1

2
sin((p− q)x)− 1

2
sin((p+ q)x),

eventually gives us, ∫ π

−π

sin(px) · sin(qx)dx = 0, when p ̸= q, (4)∫ π

−π

sin2(px) = π when p ̸= 0,∫ π

−π

sin(px) · cos(qx)dx = 0. (5)

Definition 1.2.1. In general, two functions u(x) and v(x) are said to be orthogonal to
each other over an interval (a, b) if∫ b

a

u(x)v(x)dx = 0.

The vanishing of the integrals in (3), (4) and (5) can be expressed by stating that any
two of the functions 1, cos(x), cos(2x), cos(3x), · · · , sin(x), sin(2x), sin(3x), · · · are
orthogonal to each other over the interval (−π, π).
The integral involved in the definition of orthogonal functions given above is well-defined
when u and v are piece-wise continuous on the interval a < x < b. So, one can define an
inner product of functions f and g in Cp(a, b) [10], the function space of all piece-wise
continuous functions on the interval a < x < b as:

⟨f, g⟩ =
∫ b

a

f(x)g(x)dx.

Here, it is easy to verify positive definiteness, symmetricity and bilinearity for this inner
product. Now considering this inner product defined above, one can say that functions
f and g are orthogonal to each other if their inner product is zero.

1.3 Determination of the coefficients

For the sake of formal calculations we integrate f in (1), by integrating the series term-
by-term. So, the integration of (1) using (2) gives us:∫ π

−π

f(x)dx = 2πA0

=⇒ A0 =
1

2π

∫ π

−π

f(x)dx.

2



Now, in order to determine ak for non-zero k, let identity (1) be multiplied through by
cos(kx) and the resulting expression for f(x) cos(kx) be integrated from −π to π, still
under the assumption of linearity of integration. When doing so, again, each integral
on the right side of the expression reduces to zero, as a consequence of (2), (3) and (5),
except the term with cos2(kx) as the integrand and it is found that :∫ π

−π

f(x) cos(kx)dx = ak

∫ π

−π

cos2(kx)dx = πak

=⇒ ak =
1

π

∫ π

−π

f(x) cos(kx)dx. (6)

Similarly, we will have :

bk =
1

π

∫ π

−π

f(x) sin(kx)dx. (7)

Here, the formula for ak does not reduce to that for A0 if k is equal to 0. However, if 2A0

is denoted by a0, then this a0 is given by (6) with k = 0. Thus, from now on, a Fourier
series will regularly be written in the form,

a0
2

+
∞∑
k=1

[ak cos(kx) + bk sin(kx)], (8)

with all coefficients, including a0, given by (6) and (7).

1.3.1 Dependence on the period

If F (y) is a function of the variable y with period 2p, where p is an arbitrary positive
number and let F (y) as a function of x be denoted by f(x). Basically, we obtain F (y)
by performing the following change of variable in f(x) :

x =
πy

p
, y =

px

π

Then f(x) has the period 2π in terms of x. If f(x) is represented by a series of the form
(8), this constitutes a representation of F (y) in the form :

F (y) =
a0
2

+
∞∑
k=1

[ak cos
(kπy

p

)
+ bk sin

(kπy
p

)
],

and the formulas given at (6) and (7) for the coefficients become :

ak =
1

p

∫ p

−p

F (y) cos
(kπy

p

)
dy, bk =

1

p

∫ p

−p

F (y) sin
(kπy

p

)
dy.

Also, if one considers ϕ(x) to be a periodic function with period 2π, then by a change of
variable, we have : ∫ a+2π

a

ϕ(x)dx =

∫ b+2π

b

ϕ(x)dx ∀ a, b ∈ R.

3



To put it formally, if a periodic function is integrated over a period interval, this interval
can be replaced by any other interval of the same length without changing the value of
the integral.

Now we can summarize the discussions made above with respect to a Fourier series. In
context of the Fourier series of a function of period 2π, the integrals may be written
as extended over the interval (0, 2π) instead of (−π, π), and also the use of still other
period intervals is equally permissible. Moreover, it is now clear that, a Fourier series
representation of the form given at (1) is possible not only for a 2π-periodic function but
for any periodic function with period 2p.

1.4 Series of Sines and Cosines

We start this section by stating a standard result from elementary analysis, that if ϕ(x) is
an even function, that is, ϕ(x) = ϕ(−x), and if it is integrated over any interval (−a, a),
then we have : ∫ a

−a

ϕ(x)dx = 2

∫ a

0

ϕ(x)dx.

Similarly, if ϕ(x) is odd, that is, if ϕ(−x) = −ϕ(x), then :∫ a

−a

ϕ(x)dx = 0.

Using this result above, we consider the following two cases in any interval of period 2π.

1.4.1 Case A : f(x) is an even function

In this case, when f(x) is even, the function f(x) cos(kx) is also even and the function
f(x) sin(kx) is odd, for each value of k. When the coefficients in the Fourier series for
f(x) are defined by (6) and (7), we have :

ak =
2

π

∫ π

0

f(x) cos(kx)dx, bk = 0. (9)

Thus, the Fourier series for an even function contains only the cosine terms and the
coefficients are given by (9).

1.4.2 Case B : f(x) is an odd function

Now, the products f(x) cos(kx) and f(x) sin(kx) are odd and even functions respectively.
The Fourier series contains only sine terms, and the coefficients being given by :

ak = 0, bk =
2

π

∫ π

0

f(x) sin(kx)dx. (10)

Now from the discussion done through the two cases, we must notice that the formulas (9)
and (10) in themselves involve the values of the function f(x) only in the interval (0, π).
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Thus, any function which is integrable from 0 to π, that is, f ∈ L1[0, π] can be formally
represented in that interval, without any assumptions in advanced that whether it is even
or odd or periodic or defined elsewhere at all, by a series of cosines with coefficients (9)
and alternatively by a series of sines with coefficients (10).

1.5 Magnitude of coefficients under special hypotheses

Let f(x) be a function of period 2π, which has a continuous first derivative for all values
of x. In the integral defining the Fourier coefficients ak (6), integration-by-parts gives us

πak =

∫ π

−π

f(x) cos(kx)dx

= [(
1

k
)f(x) sin(kx)]

∣∣∣π
−π︸ ︷︷ ︸

this part vanishes

−1

k

∫ π

−π

f ′(x) sin(kx)dx.

By using Extreme Value Theorem, if M1 is the maximum of |f ′(x)| then,∣∣∣ ∫ π

−π

f ′(x) sin(kx)dx
∣∣∣ ≤ ∫ π

−π

|f ′(x) sin(kx)|dx

≤
∫ π

−π

M1dx = 2πM1.

Thus, we have |ak| ≤ 2M1

k
. Similarly, we can deduce that |bk| ≤ 2M1

k
. A major takeaway

from the discussion above is that the Fourier coefficients approach zero as the factor k
approaches infinity.

The above conclusion for the coefficients does not provide us an anticipated conclusion
as the series Σ 1

k
diverges as k approaches infinity. Note that here, the Weierstrass M-

Test [1],[23] is under usage as a sufficient condition for a series to converge. Now, we
assume that f(x) has a continuous second derivative, with M2 being the maximum of
|f ′′(x)|. Note that f is till periodic with period 2π. Analogous to the calculations done
earlier in this section, now by doing two successive integration-by-parts, we get :

πak =

∫ π

−π

f(x) cos(kx)dx = −1

k

∫ π

−π

f ′(x) sin(kx)dx

= [
1

k2
f ′(x) cos(kx)]

∣∣∣π
−π︸ ︷︷ ︸

the terms cancel out each other

− 1

k2

∫ π

−π

f ′′(x) cos(kx)dx

Here we get, |ak| ≤ 2M2

k2
, and similarly |bk| ≤ 2M2

k2
.
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The conclusion above can lead us as :

|ak cos(kx) + bk sin(kx)| ≤ |ak|| cos(kx)|+ |bk|| sin(kx)|
≤ |ak|+ |bk|

≤ 2M2

k2
+

2M2

k2

≤ 4M2

k2
.

Now due to the series Σ 1
k2

being convergent, the term in the right-hand-side of the
inequality is the general term of a convergent series. Thus, if f has continuous derivative of
higher order, then the discussion ahead can be used to conclude that its Fourier coefficients
tend to zero.

Now let us increase the generality of the class of functions to be considered. Let f(x) be
continuous and of period 2π. We further assume that the interval (−π, π) can be divided
into a finite number of sub-intervals, such that in each of which f(x) is linear. Thus, the
graph of f(x) in any one period interval is then made up of a finite number of straight
line segments of finite slope joined end-to-end. Such a function will be called a Broken
Line Function or piece-wise linear function. Figure(1) depicts the graph of a typical
Broken Line Function.

−π −π
2

π
2

π

−2

2

x

f(x)

Figure 1: Graph of a typical Broken Line Function

In our context, let the abscissas of the corners in the interior of (−π, π) be x1, x2, · · · , xm−1

and for the sake of uniformity of notation, let x0 = −π and xm = π. Further, let λj be
the constant value of f ′(x) in the interval (xj−1, xj), and

λ = max
j=1,2,··· ,m.

{|λj|}.

Now for the jth sub-interval, using integration by-parts we get :∫ xj

xj−1

f(x) cos(kx)dx = [
1

k
f(x) sin(kx)]

∣∣∣xj

xj−1

− 1

k

∫ xj

xj−1

λj sin(kx)dx

=
1

k
[f(xj) sin(kxj)− f(xj−1) sin(kxj−1)]︸ ︷︷ ︸

term A

+
λj
k2

[cos(kxj)− cos(kxj−1)]︸ ︷︷ ︸
term B

.
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So, when a summation over m−intervals is performed, we get :

∑
term A =

1

k

m∑
j=1

[
f(xj) sin(kxj)− f(xj−1) sin(kxj−1)

]
=

1

k
[f(π) sin(kπ)− f(−π) sin(−kπ)]

= 0.

Also, since we have
∣∣∣(λj

k2
)[cos(kxj)− cos(kxj−1)]

∣∣∣ ≤ ∣∣∣λj

k2

∣∣∣[| cos(xj)|+ | cos(xj−1)|
]
≤ 2λ/k2,

as a consequence we have :∣∣∣∑ term B
∣∣∣ = ∣∣∣ m∑

j=1

(
λj
k2

)[cos(kxj)− cos(kxj−1)]
∣∣∣

≤ 2λ

k2
·

m∑
j=1

1

≤ 2λ

k2
·m.

Due to finite number of xjs, we can conclude that :

|ak| =
1

π

∣∣ m∑
j=1

∫ xj

xj−1

f(x) cos(kx)dx
∣∣ ≤ 2mλ

πk2
.

Performing similar calculations for bk one can get that :

|bk| ≤
2mλ

πk2
.

Thus following the above discussion we can conclude that the Fourier coefficients ak and
bk of a broken-line function are such that :

|ak| ≤
C

k2
; |bk| ≤

C

k2
, (11)

where C = 2mλ
π

, independent of k.

Thus, if f is a broken line function, then again its Fourier coefficients tend to zero.

As we know that, a necessary condition for a series to be convergent is that the terms of
the series must approach zero as the index of the terms becomes arbitrarily large, we can
produce the major takeaway for this section by considering the above discussions.

Lemma 1.5.1. If f is piece-wise continuously differentiable with continuous derivative
of second order, then its Fourier coefficients tend to zero. Thus, for such functions at
least the necessary condition, for its Fourier series to be convergent, is satisfied.
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1.6 Riemann’s Theorem on the limit of general coefficients

The primary aim of this section is to introduce the Riemann’s Theorem, also known as the
Riemann-Lebesgue Lemma , which is a fundamental result in the theory of Fourier
series. It describes the behavior of the Fourier coefficients of a piece-wise continuous or in
more generality, integrable function as the index of the coefficients approaches infinity[10].

Now, let f(x) be any function is integrable over the interval (−π, π) with an additional
constraint that [f(x)]2 is also integrable over (−π, π). f is not necessarily periodic or
defined at all outside the mentioned interval.

Let sfn(x) be the partial sum of the Fourier series of f through terms of the nth order,
that is :

sfn(x) =
a0
2

+
n∑

k=1

(
ak cos(kx) + bk sin(kx)

)
. (12)

Now it follows that :∫ π

−π

f(x)sfn(x)dx =
a0
2

∫ π

−π

f(x)dx+
n∑

k=1

[
ak

∫ π

−π

f(x) cos(kx)dx+ bk

∫ π

−π

f(x) sin(kx)dx
]

=
πa20
2

+ π
n∑

k=1

[a2k + b2k].

Next, we intend to expand [sfn(x)]
2 and integrate term-by-term, so :

[sfn(x)]
2 =

a20
4︸︷︷︸
I

+ a0

n∑
k=1

(
ak cos(kx) + bk sin(kx)

)
︸ ︷︷ ︸

II

+
( n∑

k=1

(
ak cos(kx) + bk sin(kx)

))2
︸ ︷︷ ︸

III

Hence, when we integrate [sfn(x)]
2 from −π to π, we would be getting the sum of the

following three terms in the result :

∫ π

−π

I dx =

∫ π

−π

a20
4
dx =

πa20
2
.

∫ π

−π

II dx = a0

∫ π

−π

n∑
k=1

(
ak cos(kx) + bk sin(kx)

)
dx

= a0

n∑
k=1

(∫ π

−π

ak cos(kx)dx+

∫ π

−π

bk sin(kx)dx
)

= 0.

∫ π

−π

III dx =

∫ π

−π

n∑
k=1

(
ak cos(kx) + bk sin(kx)

)2
dx

8



∫ π

−π

III dx =

∫ π

−π

( n∑
k=1

ak cos(kx)
)2
dx+

∫ π

−π

( n∑
k=1

bk sin(kx)
)2
dx +

2

∫ π

−π

( n∑
k=1

ak cos(kx)
)
·
( n∑

k=1

bk sin(kx)
)
dx

=

∫ π

−π

[ n∑
k=1

(
a2k cos

2(kx)
)
+

n∑
k=1
j=1
k ̸=j

(
ak cos(kx)aj cos(jx)

)]
dx +

∫ π

−π

[ n∑
k=1

(
b2k sin

2(kx)
)
+

n∑
k=1
j=1
k ̸=j

(
bk sin(kx)bj sin(jx)

)]
dx +

2

∫ π

−π

[ n∑
j=1

n∑
k=1

(
aj cos(jx) · bk sin(kx)

)]
dx

=
(
π

n∑
k=1

a2k + 0
)
+
(
π

n∑
k=1

b2k + 0
)
+ 0

= π
( n∑

k=1

a2k + b2k
)
.

Thus, we have : ∫ π

−π

(
sfn(x)

)2
dx =

πa20
2

+ π
( n∑

k=1

a2k + b2k
)
.

Consequently, combining the above conclusions we get :∫ π

−π

[
f(x)− sfn(x)

]2
dx =

∫ π

−π

(
f(x)

)2
dx− 2

∫ π

−π

f(x)sfn(x)dx+

∫ π

−π

[
sfn(x)

]2
dx

=

∫ π

−π

(
f(x)

)2
dx−

[πa20
2

+ π
( n∑

k=1

a2k + b2k
)]
.

Here, in this inequality, the integrand of the integral present in the left-hand-side is
positive, so the Bessel’s Inequality follows, that is :

a20
2

+
( n∑

k=1

a2k + b2k
)
≤ 1

π

∫ π

−π

(
f(x)

)2
dx.

Remark that, the last inequality is valid for all possible values of n, while the right-
hand-side of the inequality in independent of n, hence it is clear that,

∑n
k=1(a

2
k + b2k) is

convergent. Now using the necessary condition for a series to be convergent, that is, its
general term must approach zero, we get :

lim
k→∞

ak = 0, lim
k→∞

bk = 0. (13)

Thus, from the discussion done so far in this section we can present the following lemma.
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Lemma 1.6.1. Riemann-Lebesgue Lemma (II-form) For f ∈ L2(−π, π), its Fourier
coefficients approach zero as their index approaches infinity.

The result in Lemma(1.6.1) also remains true without the requirement of square inte-
grability on f , and is popularly known as the Riemann-Lebesgue Lemma (I-form)[24].
Further, the deductions done to achieve (13) can be presented in a different way. If
ϕ(x) is a function, not necessarily periodic, such that both ϕ and ϕ2 are integrable over
(−π, π), then we have :

lim
n→∞

∫ π

−π

ϕ(u) cos(nu)du = 0, lim
n→∞

∫ π

−π

ϕ(u) sin(nu)du = 0. (14)

Now, in the interpretation resulting (14), if all the hypotheses are satisfied by ϕ(u), then
they will be also satisfied by ϕ(u) sin(u/2) and ϕ(u) cos(u/2). Thus, substituting these
products in the integrals given in (14), we get :

lim
n→∞

∫ π

−π

ϕ(u) sin(u/2) cos(nu)du = 0, lim
n→∞

∫ π

−π

ϕ(u) cos(u/2) sin(nu)du = 0,

and finally adding them we get :

lim
n→∞

∫ π

−π

ϕ(u) sin
(
(n+

1

2
)u
)
du = 0. (15)

Remark : The implications provided by the Riemann-Lebesgue Lemma also remain true
without the requirement of square integrability, that is, [f ]2 is integrable. A direct proof
for (15) for this more general case can be found at [1].

1.7 Evaluations of a sum of Cosines

Let the sum given as :

G(v) = 1

2
+

n∑
k=1

cos(kv),

be multiplied by 2 sin(v/2). For k ≥ 1, let the products be evaluated by the relation :

2 sin(v/2) cos(kv) = sin
(
(k + 1/2)v

)
− sin

(
(k − 1/2)v

)
.

Therefore, we have :

2 sin(v/2)G(v) = sin(v/2) +
n∑

k=1

[
sin
(
(k + 1/2)v

)
− sin

(
(k − 1/2)v

)]
︸ ︷︷ ︸

a telescopic sum

= sin(v/2) +
[
sin
(
(n+ 1/2)v

)
− sin(v/2)

]
= sin

(
(n+ 1/2)v

)
,

and finally for v ̸= 0 we get :

1

2
+ cos(v) + cos(2v) + cos(3v) + · · ·+ cos(nv) =

sin
(
(n+ 1/2)v

)
2 sin(v/2)

. (16)
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1.8 Integral formula for the partial sums of Fourier series

For the definition of sfn(x) in (12), let the formulas for the coefficients be written with t
as the variable of integration :

ak =
1

π

∫ π

−π

f(t) cos(kt)dt, bk =
1

π

∫ π

−π

f(t) sin(kt)dt.

Now, if we form the products ak cos(kx) and bk sin(kx) with the expressions above for the
Fourier coefficients, then the factors cos(kx) and sin(kx) being constants with respect to
the variable of integration, can be put inside the integrals and we get :

ak cos(kx) + bk sin(kx) =
1

π

∫ π

−π

f(t) cos(kt) cos(kx)dt+
1

π

∫ π

−π

f(t) sin(kt) sin(kx)dt

=
1

π

∫ π

−π

f(t) cos
(
k(t− x)

)
dt.

So, sfn(x) has another representation as :

sfn(x) =
1

π

∫ π

−π

f(t)
[1
2
+

n∑
k=1

cos
(
k(t− x)

)]
dt, which by using (16), with v = t− x

=
1

π

∫ π

−π

f(t)
sin
[
(n+ 1/2)(t− x)

]
2 sin

[
1/2(t− x)

] dt. (17)

Now let us suppose that, f(x) has period 2π. In (17), if we make a change of variable,
with the substitution u = t − x, the limits of integration at first changes to −π − x to
π − x, but that would be equivalent to having the integral from −π to π, as f(x) is
periodic with period 2π, with respect to u. So, we have :

sfn(x) =
1

π

∫ π

−π

f(x+ u)
sin
[
(n+ 1/2)u

]
2 sin(u/2)

du. (18)

1.9 Convergence at a point of continuity

By integrating (16) from −π to π :∫ π

−π

sin
[
(n+ 1/2)u

]
2 sin(u/2)

du =

∫ π

−π

1

2
du+

∫ π

−π

cos(u)du+ · · ·+
∫ π

−π

cos(nu)du

=⇒
∫ π

−π

sin
[
(n+ 1/2)u

]
2 sin(u/2)

du = π. (19)

On multiplying both sides of (19) by f(x)
π
, we get the following keeping in mind that f(x)

is constant with respect to the integrating variable u,

f(x) =
1

π

∫ π

−π

f(x)
sin
[
(n+ 1/2)u

]
2 sin(u/2)

du. (20)
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Next, doing the substraction (18) - (20) we get :

sfn(x)− f(x) =
1

π

∫ π

−π

(
f(x+ u)− f(x)

)sin [(n+ 1/2)u
]

2 sin(u/2)
du. (21)

It is clear that the proof of convergence involves showing that under suitable hypothesis,
the expression [sfn(x)− f(x)] approaches 0 as n tends to infinity.

Let f(x) be an integrable function of period 2π such that [f(x)]2 is also integrable over
an interval of period length. This condition is certainly satisfied, if f is considered to be
everywhere continuous, or if it is continuous except for a finite number of finite jumps in
a period.

As we aim for point-wise convergence, for now we assume that the Fourier series is
convergent to the respective function at a point of continuity. Let this point, at least in
this section, be x. Now, the value of x being regarded as fixed, let :

ϕ(u) =
f(x+ u)− f(x)

2 sin(u/2)
.

Here, considering the hypotheses we have chosen in this section, our intuition suggests us
to work with ϕ(u) such that it is either continuous everywhere or at least it is continuous
except for a finite number of finite jumps. By the construction of ϕ, we must analyse this
function in the neighborhood of u = 0. We see,

ϕ(u) =
f(x+ u)− f(x)

u︸ ︷︷ ︸
Q1

· (1/2)u

sin(u/2)︸ ︷︷ ︸
Q2

.

First of all, the quotient Q2, is continuous everywhere except at zero, and the limiting
value of Q2 at zero is 1. Thus, if we define Q2 to be 1 at zero, the it becomes everywhere
continuous, or else if we define it with any finite value other than 1 then it would have a
finite jump discontinuity at zero. Either way the purpose appears to get fulfilled. Next,
we observe the quotient Q1 near the neighbourhood of zero. To say that Q1 is continuous
everywhere, including the point zero, it is to precisely say that f(t) has a derivative, when
t = x. On the other hand. Again, if Q1 is not continuous at zero but has a finite value
means that the right-hand-derivative and the left-hand-derivative of f(t) are both finite
but are not equal to each other at t = x. Hence, this discussion will put some further
constraints on the function f .

Continuing from (21), we get :

sfn(x)− f(x) =
1

π

∫ π

−π

ϕ(u) sin
[
(n+ 1/2)u

]
du. (22)

Now taking into account the discussions done in the last paragraph, it is clear that if,
f(t) is continuous everywhere except for a finite number of finite jumps in a period, then
the same is true for ϕ(u). So we can apply (15) to (22) and get :

lim
n→∞

[
sfn(x)− f(x)

]
= 0.

Thus, we may now state the following result.
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Theorem 1.9.1. Let f(x), periodic with period 2π, be continuous everywhere, or be
continuous except for a finite number of finite jumps in a period. If f is continuous at a
point x0 such that the left-hand-derivative and the right-hand-derivative of f at x0 exists
(whether they are same or not, is not a thing to bother about). Then, its Fourier series
converges to the value f(x0).

1.10 Uniform convergence under special hypothesis

In this section, we will consider f to be a Broken-Line Function, as introduced in sec-
tion(1.5). Clearly, the conclusion deduced in section(1.9) also holds for Broken line func-
tions. Moreover, from the discussions done in section(1.5) it is clear that the Fourier
series for such a function is convergent, so it is assured that the sum of the series is f(x)
for all values of x. So, since the series actually represents f(x), we can write the difference
as :

f(x)− sfn(x) =
∞∑

k=n+1

[
ak cos(kx) + bk sin(kx)

]
.

As a consequence of (11), we get that
∣∣ak cos(kx) + bk sin(kx)

∣∣ ≤ 2C
k2
, and therefore :

∣∣f(x)− sfn(x)
∣∣ ≤ 2C

∞∑
k=n+1

1

k2
.

Now, whenever k − 1 ≤ t ≤ k, it follows that :

1

k
≤ 1

t
≤ 1

k − 1
=⇒ 1

k2
≤ 1

t2
.

So, we can perform,

1

k2
=

∫ k

k−1

dt

k2
≤
∫ k

k−1

dt

t2

=⇒
∞∑

k=n+1

1

k2
≤

∞∑
k=n+1

∫ k

k−1

dt

t2

=

∫ n+1

n

dt

t2
+

∫ n+2

n+1

dt

t2
+ · · ·

=

∫ ∞

n

dt

t2

=
1

n
.

Hence, for all values of x,

|f(x)− sfn(x)| ≤
2C

n
.

In the inequality above, the member of the right-hand-side is independent of x, and
approaches zero as n becomes infinite. Hence, by definition we conclude that, the Fourier
series for a Broken line function converges uniformly to the function for all values of x.
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1.11 Convergence at a point of discontinuity

Let f be a 2π-periodic function, such that it is continuous everywhere or is continuous
except for a finite number of finite jumps in a period. Let f(x+) and f(x−) denote
its limiting value when approached from the right and left of the point x respectively.
Clearly, f(x+) and f(x−) might be equal or different depending on whether x is a point
of continuity or discontinuity.

Now for a given x, let us construct the following functions :

ϕ1(u) =

{
f(x+u)−f(x+)

2 sin(u/2)
for u > 0,

0 for u < 0.

ϕ2(u) =

{
f(x+u)−f(x−)

2 sin(u/2)
for u < 0,

0 for u > 0.

The only thing which needs to be taken care of is the value of ϕ1 and ϕ2 at zero. We
assume that the quotients f(x+u)−f(x+)

2 sin(u/2)
and f(x+u)−f(x−)

2 sin(u/2)
approaches a limit as u approaches

0. Basically for ϕ1, we assume that a function which equals f(t) for t < x and equals
f(x+) for t = x has a right-hand-derivative at t = x. Similar interpretation can be made
for the other quotient.

Thus, both ϕ1 and ϕ2 likewise approach limits for u = 0, and if they are defined by
their limiting values there, then they are continuous except for a finite number of finite
jumps throughout (0, π) and (−π, 0) respectively. Further, the hypotheses on which (15)
is based are fulfilled even if phi and phi2 are integrable over (0, π) and is identically zero
on (−π, 0). So, under such assumption, from (15) we will have :

lim
n→∞

∫ π

0

ϕ(u) sin
[
(n+ 1/2)u

]
du = 0. (23)

A similar discussion can be made for the case considering the interval (−π, 0). Also, as
the integral in (19) is an even function, we have :∫ 0

−π

sin
[
(n+ 1/2)u

]
2 sin(u/2)

du =

∫ π

0

sin
[
(n+ 1/2)u

]
2 sin(u/2)

du =
π

2
.

Here, on multiplying by f(x+)
π

we get :

1

2
f(x+) =

1

π

∫ π

0

f(x+)
sin
[
(n+ 1/2)u

]
2 sin(u/2)

du,

and similarly,
1

2
f(x−) =

1

π

∫ 0

−π

f(x−)
sin
[
(n+ 1/2)u

]
2 sin(u/2)

du.

Finally, from (18), sfn(x) = 1
π

∫ π

−π
f(x + u)

sin
[
(n+1/2)u

]
2 sin(u/2)

du, we get sfn(x) − 1
2
[f(x+) −

f(x−)] =

1

π

∫ 0

−π

ϕ2(u)
sin
[
(n+ 1/2)u

]
2 sin(u/2)

du+
1

π

∫ π

0

ϕ1(u)
sin
[
(n+ 1/2)u

]
2 sin(u/2)

du.
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Hence, using (23) here we get :

lim
n→∞

sfn(x) =
1

2
[f(x+) + f(x−)].

Thus, we can conclude this section by presenting the following result.

Theorem 1.11.1. For any periodic function f with period 2π, which is either continuous
or continuous everywhere except for a finite number of finite jumps, its Fourier series at
x (it may or may not be a point of continuity) converges to the value 1

2
[f(x+) + f(x−)]

such that the right-hand-derivative and the left-hand-derivative of f exists at x.

Note that the above conclusion also holds true for f being piece-wise continuous. Direct
proof for this can be found at [10].

1.12 A theoretical & numerical case study

Let us analyse the 2π periodic function f which is identically equal to the identity function
in the interval (−π, π). The graph of this function is given in figure(2) below.

−5π −3π −π π 3π 5π

−4

−2

2

4

x

f(x)

Figure 2: Graph of the 2π-periodic function, such that f(x) ≡ x for x ∈ (−π, π)

Since, f ≡ x in the interval (−π, π), which is an odd function, so by using the conclusions
made in section(1.4), we know that the Fourier coefficients ak for all k are zero. Again,
using integration-by-parts :∫ π

0

x sin(kx)dx = [−1

k
x cos(kx)]

∣∣∣π
0
+

1

k

∫ π

0

cos(kx)dx =
−π
k

cos(kπ)

=⇒ bk =
2

π

∫ π

0

x sin(kx)dx = (−1)k−1 2

k
.

Hence, the Fourier series has the form :

2
[
sin(x)− sin(2x)

2
+

sin(3x)

3
− sin(4x)

4
+ · · ·

]
(24)
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(a) Plot for sf10(x) and f(x) (b) Plot for sf20(x) and f(x)

(c) Plot for sf40(x) and f(x) (d) Plot for sf80(x) and f(x)

(e) Plot for sf160(x) and f(x) (f) Plot for sf320(x) and f(x)

Figure 3: Plots of sfn(x) and f(x) for different truncation terms, n with 5000 equidistant
evaluation points in [−π, π].

Now, in (24) each term is odd, still having the same period 2π, hence its sum must also
be odd and 2π-periodic, which here is in accordance with the nature of the function f .
The convergence of this series (24) to the function f verifies the result achieved in the
end of Section(1.9) and Section(1.10).

Further, the graph clearly tells that f is discontinuous at x = ±π,±3π, · · · . One can
see that, at these points of discontinuity, the series (24) converges to zero as each term
vanishes individually. Thus, the result produced at the end of Section(1.11) is also verified,
which says that the sum of (24) must be zero at all these points of discontinuity.
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The results which have been verified through this example in the last two paragraphs,
can also be verified numerically‡ . The convergence of the Fourier series to the function
is numerically verified here, as we can see in figure(3e)[truncation term, n=160] and
figure(3f)[truncation term, n=320] that, we cannot even differentiate the plots of sf160(x)
and f(x); and sf320(x) and f(x) respectively. Further the result achieved for a point of
discontinuity, at the end of section(1.11), can also be verified, as in each plot the curve
for sfn(x) passes through y = 0 for the endpoints x = ±π.

−3π −2π −π π 2π 3π

−2

2

x

g(x)

Figure 4: Graph of the 2π-periodic extension of the Signum function in (−π, π)

Next, let us consider g(x) to be the function which is the 2π-periodic extension of the
Signum function in the interval (−π, π). The graph of this function is given in Figure(4)
above. Here, clearly the points x = 0,±π,±2π,±3π, · · · are points of discontinuities,
and the result at the end of Section(1.11) says that sgn(x) at these points must be zero.
Further the results deduced for convergence at points of continuity says that sgn(x) must
converge to g(x) at points other than these mentioned points of discontinuities. Numerical
verification of these results is evident from plots at Figure(5) and Figure(6).

(a) Plot for sg10(x) and g(x) (b) Plot for sg20(x) and g(x)

Figure 5: Plots of sgn(x) and g(x) for different truncation terms, n with 1000 equidistant
evaluation points in [−π, π].
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(a) Plot for sg160(x) and g(x) (b) Plot for sg320(x) and g(x)

Figure 6: Plots of sgn(x) and g(x) for different truncation terms, n with 1000 equidistant
evaluation points in [−π, π].

1.13 Sufficiency of conditions relating to a restricted neighbour-
hood

We continue our discussion from Section(1.9) in order to deduce a conclusion of higher
degree of generality from (22). Let us consider a 2π-periodic function f such that f(t)
and [f(t)]2 are both integrable over a period, and further there is an interval (x−h, x+h)
throughout which f(t) vanishes identically. This clearly tells both ϕ(u) and [ϕ(u)]2 are
integrable from −π to π, since the numerator of ϕ(u) is identically zero throughout the
neighborhood of the point where the denominator vanishes. So, in that interval :

lim
n→∞

sfn(x) = f(x) = 0.

Now let f1(t) and f2(t) be two functions, each along with their squares integrable over
a period, and let these be identically equal to each other throughout that interval (x −
h, x+h). If sf1n (x) and sf2n (x) are their Fourier partial sums respectively at x, then clearly
sf1n (x) − sf2n (x) is the partial sum of the Fourier series for (f1 − f2)(x). In that certain
interval (x− h, x + h), discussed till now in this section, (f1 − f2)(x) is identically zero.
Thus, by the discussion of the first paragraph of this section, we have :

lim
n→∞

sf1n (x)− sf2n (x) = (f1 − f2)(x) = 0.

Thus, in that neighbourhood, if one partial sum converges to a certain limit, then the
other partial sum converges to the same limit. Hence, this implies the conclusion that,
the convergence of the Fourier series for a function at a specified point depends only on
the behaviour of the function in the neighbourhood of the point.

Basically, if any square integrable function f is given then in order to find the sum of its
Fourier series in a given point x, one would just need another known function g such that
in a small neighborhood of x, functions f and g are identical. The sum of the Fourier
series of g would give the required result.
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1.14 Some more results

In this section we state some significant results related to the Fourier series of a function
without going through their detailed proofs. Let us proceed ahead by stating the following
definitions.

Definition 1.14.1. We define Si(x), the Sine Integral as :

Si(y) =

∫ y

0

sin(x)

x
dx, for y ∈ R>0.

1.14.1 Gibbs Phenomenon

In 1899 Gibbs[16] pointed out that the approximation curves or the Fourier partial sum
for the series (24), behaves in an unique way at the points of discontinuity ±π. He stated,
in effect, that the curve of sfn(x), for large values of n, falls from the point (−π, 0) at a
steep gradient to a point very nearly at a depth of 2Si(π) below the X-axis, and then
oscillates above and below the curve of f(x), close to this curve until x approaches π,
when it falls from a point very nearly at a height 2Si(π) above the X-axis at a steep
gradient to (π, 0). Interestingly, his statement was not accompanied by any proof.

In 1906, Bôcher in a memoir on Fourier’s Series[3], greatly extended Gibbs’s result. He
showed, among other things, that the phenomenon which Gibbs had observed in the case
of this particular Fourier’s Series holds in general at ordinary points of discontinuity.
Quoting the result, we present the following proposition.

Proposition 1.14.2. If f(x) is 2π-periodic and in a finite interval has no discontinu-
ities other than a finite number of finite jumps, and if it has a derivative which in any
finite interval has no discontinuities other than a finite number of finite discontinuities,
then as n becomes infinite the approximation curve y = Sf

n(x) approaches uniformly the
continuous curve made up of :

1. the discontinuous curve y = f(x),

2. an infinite number of straight lines of finite lengths parallel to the Y-axis and passing
through the points a1, a2, · · · on the X-axis where the discontinuities of f(x) occur.
If a is any one of these points, the line in question extends between the two points
whose ordinates are given by :

f(a−) +
J Si0
π

, f(a+)− J Si0
π

,

where J is the jump if f(x) at a, i.e, J = f(a+)− f(a−) and Si0 =
∫∞
π

sin(x)
x
dx ≈

−0.2811.

This overshooting and undershooting behaviour of sfn(x) near a point of jump disconti-
nuity can can be observed in the plots given in figure(3), figure(5) and figure(6).

Continuing this discussion along with using the conclusions of section(1.11), one can
present a much formal statement of Gibbs phenomenon. Avoiding a detailed proof for
the same, we present the following theorem.
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Theorem 1.14.3. Gibbs Phenomenon For a 2π-periodic function f , which is piece-
wise continuous, such that x0 is a point of jump discontinuity, we have :

lim
n→∞

sfn
(
x0 +

π

n

)
− f(x0+) =

( 1
π
Si(π)− 1

2

)∣∣f(x0+)− f(x0−)
∣∣

lim
n→∞

sfn
(
x0 −

π

n

)
− f(x0−) =

( 1
π
Si(π)− 1

2

)∣∣f(x0+)− f(x0−)
∣∣.

Basically theorem(1.14.3) implies that, the error in approximation of f(x), by the ap-
proximating function or the Fourier partial sum sfn(x) becomes constant near the points
of jump discontinuities. The constant error of approximation is 0.9% of the jump present
at the point. It is because in the right-hand-side of the equations, we have :( 1

π
Si(π)− 1

2

)
︸ ︷︷ ︸

≈0.0894, the Wilbraham constant

∣∣f(x0+)− f(x0−)
∣∣︸ ︷︷ ︸

jump at x0

.

For numerical experiment, we consider f as introduced in the first paragraph of sec-
tion(1.12). We approximate f(x) by the truncated Fourier sum sfn(x), starting with
n = 10, 20, 40, 80, · · · , 1280. The plots in figure(7) shows that the error in approximation
of f(x) by sfn(x), at the left-point of jump discontinuity x = −π and the right-point
of jump discontinuity x = π, approaches the value 0.9% of the jump as the truncation
number n becomes larger.

(a) Plot for error in approximation near −π and
the anticipated error in approximation,i.e., 0.9%
of jump at −π.

(b) Plot for error in approximation near π and
the anticipated error in approximation,i.e., 0.9%
of jump at π.

Figure 7: Plots for error in approximation near −π and π as truncation term n becomes
larger and the anticipated error in approximation,i.e., 0.9% of jump at −π and π.

1.14.2 Weierstrass theorem for trigonometric approximation

Definition 1.14.4. An expression of the form :

α0

2
+ α1 cos(x) + α2 cos(2x) + · · ·+ αn cos(nx)

+ β1 sin(x) + β2 sin(2x) + · · ·+ βn sin(nx),

is called an nth order trigonometric sum, if αn and βn are not both zero.
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Analogous to the Weierstrass Approximation Theorem presented in [1], we have the
following theorem.

Theorem 1.14.5. Any 2π-periodic continuous function f can be uniformly approximated
by a trigonometric sum, with any preassigned degree of accuracy. Basically, for any given
ϵ > 0, for any 2π-periodic continuous function f, ∃ a trigonometric sum T (x) of some
order, such that : ∣∣f(x)− T (x)

∣∣ < ϵ ∀x. (25)

It must be noted that if the Fourier series for f(x) is uniformly convergent, then (25) is
satisfied by taking the Fourier partial sum sfn(x) for T (x). But there exists continuous
functions whose Fourier series diverges, and hence the existence of such functions gives
significance to theorem(1.14.5).

Also, continuing from (25), since the result holds ∀x ∈ X we get that :

sup
X

∣∣f(x)− T (x)
∣∣ < ϵ.

Further, it can be observed that any power of sine or cosine can be written as a trigono-
metric sum. Hence we can conclude that, the space of all trigonometric polynomials is
dense in the space of all 2π-periodic continuous function.

1.14.3 Least square property & Parseval’s Identity

Let f be a function such that it is square integrable in (−π, π). The least square
property says that, when considered as an approximation to f(x), the partial sum of
its Fourier series is distinguished among all trigonometric sums of nth order at most, as
the one for which the integral of the square of the error in approximation is minimum.
Basically, for any nth order trigonometric sum and mentioned function f ,∫ π

−π

∣∣f(x)− sfn(x)
∣∣2dx ≤

∫ π

−π

∣∣f(x)− tn(x)
∣∣2dx (26)

We know that, for a proper closed subspace M ⊂ X of a normed space X, if x ∈
X \M , then dist(x,M) > 0. Here, if d is the metric induced by the norm on X, then
dist(x,M) := infy∈M d(x, y). In this context, when we have the following :

X = L2[−π, π],
M = span{1, cos(x), cos(2x), · · · , cos(nx), sin(x), sin(2x), · · · , sin(nx)| for some n ∈ N},
f ∈ X \M,

then the least square property tells that, we have dist(f,M) = ∥f(x)− sfn(x)∥2.
Further, for 2π-periodic continuous functions, where ak and bk are its Fourier coefficients,
then we have the Parseval’s Identity :

a20
2

+
∞∑
k=1

(a2k + b2k) =
1

π

∫ π

−π

[f(x)]2 dx.
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Checkpoint. Now that we have seen the Parseval’s Identity, we can answer a question
which has been lurking in the background since Section(1.13). The indicated question
is what can be commented about two given different functions from appropriate function
classes, which have all of their Fourier coefficients exactly the same? If we have such two
functions, say f and g, then by Paseval’s Identity we get that ||f ||L2 = ||g||L2 . Hence,
any two functions from appropriate function classes, if at all has each of their Fourier
cefficients to be same, then they can differ at most by a measure zero set.
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CHAPTER 2: STURM-LIOUVILLE SYSTEMS - I

2.1 Introduction

The purpose of this section is to mainly to settle the prelude for looking out for Sturm-
Liouville systems. To begin with, we know that Linear differential operators are linear
operators which have a differential form, that is, it typically involves derivatives of the
function(s) it operates on. For example, the most common linear differential operator one
can thing about is the first-order derivative operator, denoted as d/dx, which operates
on a function f(x) to produce its derivative f ′(x). The second-order derivative operator
(d2/dx2) and the Laplace Operator (∇2 or∆) are also some of the most familiar linear
differential operators, one often deals with. Firstly, we start the discussion with self-
adjoint differential operators (DO) and then we will get familiar with DO associated with
SL differential equations, which fall under the hood of self-adjoint DOs.

2.1.1 Exact second-order DE & Integrating Factor

Definition 2.1.1. Exact second-order differential equation
The second-order homogeneous linear differential equation :

L[u] = p0(x)u
′′(x) + p1(x)u

′(x) + p2(x)u(x) = 0 (27)

is said to be exact if and only if, for some A(x), B(x) ∈ C1, we have :

p0(x)u
′′(x) + p1(x)u

′(x) + p2(x)u(x) =
d

dx
[A(x)u′ +B(x)u] (28)

for all functions u ∈ C2.

Definition 2.1.2. Integrating Factor An integrating factor for the DE(27) is a func-
tion v(x) such that vL[u] is exact.

Note that, here onward it is assumed that p0 ∈ C2, p1 ∈ C1 and p2 ∈ C. If, an integrating
factor v for (27) can be found, then clearly we have,

v(x)[p0(x)u
′′(x) + p1(x)u

′(x) + p2(x)u(x)] =
d

dx
[A(x)u′ +B(x)u].

Hence the solutions of the second-order homogeneous linear differential equation (27) are
also the solutions of the first-order inhomogeneous linear differential equation

A(x)u′ +B(x)u = C, (29)

where C is an arbitrary constant. Also, the solution of the inhomogeneous differential
equation L[u] = r(x) are those of the first-order differential equation :

A(x)u′ +B(x)u =

∫
v(x)r(x)dx+ C. (30)
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Basically, we now have that second-order differential equations like (27) and L[u] = r(x)
can be solved simply by looking for the solutions of first-order differential equations like
(29) and (30). Hence, this reduction in complexity of finding solutions provides meaning
to the act of looking for exact second-order linear differential equation in the first place.

Now continuing from the discussions ahead, we have :

d

dx
[A(x)u′ +B(x)u] = A(x)u′′ + (A′(x) +B(x))u′ +B′(x)u.

Thus, by simply comparing the coefficients of u and its derivatives we know, DE(differential
equation) (27) is exact if and only if p0 = A, p1 = A′ + B, p2 = B′. Hence, DE(27) is
exact iff :

p2 = B′ = (p1 − A′)′ = p′1 − A′′ = p′1 − p′′0
⇐⇒ p′′0 = p′1 + p2 = 0.

Thus, by using the discussion above we can present the following lemma and further, as
a direct consequence of it we can also state a corollary as follows.

Lemma 2.1.3. The DE(27) is exact iff its coefficient functions satisfy:

p′′0 = p′1 + p2 = 0.

Corollary 2.1.4. A function v ∈ C2 is an integrating factor for the DE(27) if and only
if it is a solution of the second-order homogeneous linear DE :

M [v] = [p0(x)v]
′′ − [p1(x)v]

′ + p2(x)v = 0. (31)

2.1.2 Adjoint of a DE & Lagrange Identity

We proceed ahead by presenting the following definition.

Definition 2.1.5. Adjoint The operator M in (31) is called the adjoint of the linear
operator L. The DE(31), expanded to the DE :

p0v
′′ + (2p′0 − p1)v

′ + (p′′0 − p′1 + p2)v = 0, (32)

is called the adjoint of the DE(27).

Now, let us consider (32), as q0v
′′ + q1v

′ + q2v = 0, such that :

q0 = p0

q1 = 2p′0 − p′1
q2 = p′′0 − p′1 + p2,

and if we compute the adjoint then we get :

q0w
′′ + (2q′0 − q1)w

′ + (q′′0 − q′1 + q2)w = 0

p0w
′′ + p1w

′ + p2w = 0.

Therefore, this result constitutes to the following lemma.
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Lemma 2.1.6. Adjoint of the adjoint of a given second-order linear differential equation
is again the original given differential equation.

As we under the assumption that p0 ∈ C2 and p1 ∈ C1, so we have :

vL[u]− uM [v] = (vp0)u
′′ − u(p0v)

′′ + (vp1)u
′ + u(p1v)

′

=
d

dx
[p0(u

′v − uv′)− (p′0 − p1)uv]. (33)

Here, we have (7) as the Lagrange Identity, that is :

vL[u]− uM [v] =
d

dx
[p0(u

′v − uv′)− (p′0 − p1)uv]. (34)

One must note that the left-side of (34) is thus always an exact differential of a homoge-
neous bilinear expression in u, v, and their derivatives.

2.1.3 Self-Adjoint DE

Definition 2.1.7. Self-Adjoint DE Homogeneous linear differential equations that
coincide with their adjoint are called Self Adjoint.

Naturally from (32), we have 2p′0 − p1 = p1 =⇒ p′0 = p1. Since this clearly implies
that p′′0 − p′1 = 0 =⇒ p′′0 − p′1 + p2 = p2, we can conclude that for a given DE(27) to be
self-adjoint we have the following :

Necessary condition : p′0 = p1

Sufficient condition : p′′0 = p′1.

For self-adjoint case, one must observe that the last term in the Lagrange Identity (34)
vanishes. Moreover, when DE(27) is reduced to the normal form as u′′(x) + p1

p0
u′(x) +

p2
p0
u(x) = 0, we see that the DE hu′′ + (ph)u′ + (qh)u = 0 is self adjoint if and only if

h′ = ph =⇒ h = e
∫
pdx. This discussion leads us to present the following theorem,

which characterises the form of self-adjoint differential equations, and also gives a method
to make a DE(27) self-adjoint.

Theorem 2.1.8. The second order linear differential equation (27) is self-adjoint if and
only if it has the form :

d

dx

[
p(x)

du

dx

]
+ q(x)u = 0 (35)

Further, a DE(27) can be made self-adjoint by multiplying it through by :

h(x) =
[
e
∫ p1

p0
dx
]
/p0.

For self-adjoint differential equations(35), the Lagrange Identity simplifies to :

vL[u]− uM [v] =
d

dx
[p(x)(u′v − uv′)]. (36)
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Example. We consider the Chebyshev DE as follows :

(1− x2)u′′ − xu′ + λu = 0. (37)

After comparing this with the standard form of second-order linear homogeneous differ-
ential equation as (27) we get the following :

p0 = 1− x2

p1 = −x
p2 = λ.

Therefore, we now compute the function h(x) as given in Theorem(2.1.8) as,

h(x) = e
∫ p1

p0
dx
/p0

= e
∫ −x

1−x2
dx
/(1− x2)

= elog(
√
1−x2)+C/(1− x2) [where C is a constant].

=
eC(

√
1− x2)

(1− x2)

=
eC√
1− x2

.

Thus, the self-adjoint form is :

(eC
1− x2√
1− x2

)u′′ + (eC
(−x)√
1− x2

)u′ + (eC
λ√

1− x2
)u = 0

=⇒ eC
d

dx

[√
1− x2

du

dx

]
+ eC

[ λ√
1− x2

]
u = 0.

Thus the self-adjoint form of the Chebyshev Differential Equation (37) is :

d

dx

[√
1− x2 · du

dx

]
+
[ λ√

1− x2

]
u = 0.

2.1.4 Sturm-Liouville Systems

A Sturm-Liouville equation is a second-order homogeneous linear differential equation of
the form :

d

dx

[
p(x)

du

dx

]
+ [λρ(x)− q(x)]u = 0. (38)

In operational notation, with L = D[p(x)D] − q(x), we can write (12) in the following
compact form :

L[u] + λρ(x)u = 0.

We see that DEs like (38) are self-adjoint for real λ; further to ensure the existence of
solutions, the functions q and ρ are assumed to be continuous and p ∈ C1. For a given
value of λ, (38) defines a linear operator transforming any function u ∈ C2 into L[u]+λρu.
The Sturm-Liouville equation is called Regular in a closed finite interval a ≤ x ≤ b when
the functions p(x) and ρ(x) are positive for a ≤ x ≤ b.
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Definition 2.1.9. Sturm-Liouville System A Sturm-Liouville system (or SL system)
is a Sturm-Liouville equation together with endpoint conditions (or boundary conditions),
to be satisfied by the solutions, for example u(a) = u(b) = 0. Further, a regular SL system
is a regular SL equation (38) on a finite closed interval [a, b], together with two separated
endpoint conditions of the form :

αu(a) + α′u′(a) = 0; βu(b) + β′u′(b) = 0. (39)

Here α, α′, β, β′ are given real numbers. We obviously exclude the two trivial conditions
α = α′ = 0 and β = β′ = 0.

A non-trivial solution of an SL system is called an eigenfunction , and the corresponding
λ is called eigenvalue . The set of all eigenvalues of a regular SL system is called the
spectrum of the system.

Example Let us consider the SL system consisting of the DE u′′+λu = 0, in the interval
[0, π] with Dirichlet boundary conditions u(0) = u(π) = 0.

Here, firstly we consider the case : λ < 0. On solving the characteristic equation we get
the roots r as r = −λ = α2, where α ∈ R>0. Hence, the general solution for the above DE
would be u(x) = Aeαx + Be−αx. Imposing the boundary conditions we get A = B = 0,
hence the only solution for the given SL system under this case is the trivial solution
u ≡ 0. Next, Here, we consider the case : λ = 0. On solving the characteristic equation
we get the roots r as r = 0 and hence the general solution would be u(x) = A + Bx.
Again on imposing the boundary conditions we get the only solution for this case to be
the trivial solution u ≡ 0. Thus, we may conclude that for the given SL system, its
eigenvalues has to be positive.

Finally, we consider the case : λ > 0. Here, the roots of the characteristic equation are
r = ±i

√
λ. Thus, the general solution would be u(x) = A sin(

√
λx) + B cos(

√
λx). Here

after imposing the boundary conditions we get the eigenvalues to be λ = n2, n = 1, 2, 3, · · ·
and the eigenfunctions un(x) = sin(

√
λx) = sin(nx).

Definition 2.1.10. Periodic Endpoint Conditions For SL equations whose coeffi-
cients are periodic functions of x with period b− a, periodic endpoint conditions :

u(a) = u(b), u′(a) = u′(b), (40)

are sometimes imposed, and this gives another SL system, called a periodic SL system.

2.2 Sturm-Liouville Series - an example

Example. Let us consider the SL system consisting of the DE u′′ + λu = 0, in the
interval [−π, π] with the periodic endpoint conditions u(−π) = u(π), and u′(−π) = u′(π).

Here solving this similar to the previous example we get the eigenfunctions to be 1, cos(nx)
and sin(nx) where n is any positive integer. Also, the corresponding eigenvalues are
λ = n2, the squares of integers.
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An important observation here worth noting is that, if n > 0, then we have two linearly
independent eigenfunctions having the same eigenvalue n2. Also, these eigenfunctions are
orthogonal using the orthogonality definition(1.2.1) introduced in section (1.2). Also, the
eigenfunctions in this example are precisely the functions used in the theory of Fourier
Series, Chapter (1).

Definition 2.2.1. Two integrable real-valued functions f and g are orthogonal with weight
function ρ > 0 on a finite interval I if and only if :∫

I

ρ(x)f(x)g(x)dx = 0.

Let us assume that u and v satisfy an SL - equation (38) on a closed interval a ≤ x ≤ b,
for values λ and µ of the parameter. For such u and v, we consider the Lagrange’s Identity
(33) :

uL[v]− vL[u] =
d

dx

[
p(x)[u(x)v′(x)− u′(x)v(x)]

]
=⇒

∫ b

a

uL[v]− vL[u]dx =

∫ b

a

d

dx

[
p(x)[u(x)v′(x)− u′(x)v(x)]

]
dx

=
[
p(x)[u(x)v′(x)− u′(x)v(x)]

]∣∣∣x=b

x=a

Also, ∫ b

a

uL[v]− vL[u]dx =

∫ b

a

[
u(−µρv)− v(−λρu)

]
dx

=

∫ b

a

[
− µρuv + λρuv

]
dx

=

∫ b

a

[
(λ− µ)ρuv

]
dx

= (λ− µ)

∫ b

a

ρ(x)u(x)v(x)dx

Thus, we get :

(λ− µ)

∫ b

a

ρ(x)u(x)v(x)dx =
[
p(x)[u(x)v′(x)− u′(x)v(x)]

]∣∣∣x=b

x=a︸ ︷︷ ︸
we call this term its Boundary Term.

. (41)

We can present this discussions in the form of the following lemma.

Lemma 2.2.2. If u and v satisfy an SL equation (38) on a closed finite interval a ≤ x ≤ b
for values λ and µ of the parameter, then

(λ− µ)

∫ b

a

ρ(x)u(x)v(x)dx =
[
p(x)[u(x)v′(x)− u′(x)v(x)]

]∣∣∣x=b

x=a
.
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Now continuing the discussion, after imposing the separated endpoint conditions (α ̸=
α′ ̸= 0) discussed above, we get :

αu(a) = −α′u′(a)

αv(a) = −α′v′(a)

=⇒ (−αα′)u(a)v′(a) = (−αα′)v(a)u′(a)

=⇒ u(a)v′(a)− v(a)u′(a) = 0

=⇒ p(a)[u(a)v′(a)− u′(a)v(a)] = 0.

Similarly, the formulas cover the right-hand member of (41) at x = b, that is, p(b)[u(b)v′(b)−
u′(b)v(b)] = 0. Therefore, we conclude that for SL system (39), the right-hand side mem-
ber of (41) vanishes. Basically, for λ ̸= µ,

(λ− µ)︸ ︷︷ ︸
non−zero

∫ b

a

ρ(x)u(x)v(x)dx = 0.

Observing both, the last example in the previous section and the example above, we
can highlight the importance of the boundary condition involved in a SL system. In
these examples a change in the boundary condition itself changed the eigenfunctions.
Further, lemma(2.2.2) tells that its right-hand side member, defined as the boundary
term in (41), goes to zero only for certain and not all boundary conditions. Basically,
we can suggest that the orthogonality of the eigenfunctions of a SL system depends on
its boundary condition. Here, we have seen that for a separated endpoint condition the
boundary term vanishes. Also, using the discussion so far, we can present the following
theorem.

Theorem 2.2.3. Eigenfunctions of a regular SL system (39) with separated boundary
condition, having different eigenvalues are orthogonal with weight functions ρ. Basically,
if u and v are eigenfunctions belonging to distinct eigenvalues λ and µ, then∫ b

a

ρ(x)u(x)v(x)dx = 0.

Since periodic endpoint condition is a separated boundary condition, we have the follow-
ing corollary.

Corollary 2.2.4. The result of the theorem above also holds for SL systems with periodic
endpoint conditions.

It is easy to see that the remark made after the example discussed in this section is a
proof of the fact that the converse of theorem(2.2.3) is not true.

Naturally, now it is a food for thought whether the orthogonality relation just proved
above enables us to obtain expansions similar to Fourier series for general functions
f(x) ∈ L2[a, b], but now consisting eigenfunctions of other SL systems instead of just
sinusoids; resulting an infinite series called Sturm-Liouville Series.
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2.3 Singular Sturm-Liouville Systems

Having theorem(2.2.3) for regular SL systems it is now natural to find out a similar
result for SL system which are not regular. Let us now shift to a higher perspective and
consider SL systems which are not regular. An SL equation (38) can be given on a finite,
semi-infinite or an infinite interval I. In the finite case, I may exclude either one or both
endpoints. Let us consider the following scenarios regarding an SL systems.

1. If I is semi-infinite or infinite.

2. If I is finite but both p and ρ, or one of them vanishes at one or both endpoints.

3. If q is discontinuous in one or both endpoints.

4. If limx→a p(x) = 0; limx→a ρ(x) = 0 at endpoint a.

In all these above mentioned cases, one cannot obtain a regular SL system from DE(38).
In such cases, the given SL equation of the form (38) is called Singular, and we can obtain
a Singular SL system from it by imposing such endpoint conditions which cannot always
be described by formulas of the form (39). A common example is, the condition that a
solution u be bounded near a singular endpoint.

Example. We consider the SL system consisting of the Legendre DE [(1−x2)u′]′+λu = 0,
in the interval −1 < x < 1 together with the endpoint condition that a solution u be
bounded near the endpoints. This forms a singular SL system.

In order to solve this system, we employ the power series method [22]. Firstly, we identify
x = 0 as a regular point [22] and then solve the DE. For non-negative integers n, the
eigenvalues are λn = n(n+ 1) and the general solution of the Legendre DE becomes,

y(x) = a0ϕλ(x) + a1ψλ(x), for some constants a0, a1 such that,

ϕλ(x) = 1 +
∞∑
k=1

x2k

(2k)!

k∏
m=1

{(2m− 1)(2m− 2)− λ},

ψλ(x) = x+
∞∑
k=1

x2k+1

(2k + 1)!

k∏
m=1

{(2m)(2m− 1)− λ}.

It can be verified that ϕλ(x) and ψλ(x) are linearly independant as their Wronskian at
x = 0 is 1. From the above forms of ϕλ, ψλ and now that λ depends on n, it is evident
that when n is even the series ϕn(x) terminates with xn, whereas the series for ψn(x) does
not terminate. When n is odd, it is the series for ψn(x) which terminates with xn, while
that for ϕn(x) does not terminate. In the first case when n is even, ϕn(x) is a polynomial
of degree n. The same is true for ψn(x) in the second case when n is odd. Therefore, for
any nonnegative integer n, either ϕλ(x) or ψλ(x), but not both, is a polynomial of degree
n. It follows that the general solution of the Legendre DE contains a polynomial Pn(x)
and an infinite series Qn(x) for n = 0, 1, 2, 3, · · · . This polynomial solution[20] Pn(x) is
called the Legendre function of the first kind of order n. It is also known as the Legendre
polynomial of degree n.
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Continuing the discussion from the last paragraph, for each n ∈ N0, we obtain a pair of
linearly independent solutions of the Legendre DE, one of which is a polynomial and the
other an infinite power series which converges in (−1, 1).

n = 0, P0(x) = 1

Q0(x) = x+
1

3
x3 +

1

5
x5 + · · · ,

n = 1, P1(x) = x

Q1(x) = 1− x2 − 1

3
x4 + · · · ,

n = 2, P2(x) =
1

2
(3x2 − 1)

Q2(x) = x− 2

3
x3 − 1

5
x5 + · · · ,

n = 3, P3(x) =
1

2
(5x3 − 3x)

Q3(x) = 1− 6x2 − 3x4 + · · · ,

n = 4, P4(x) =
1

8
(35x4 − 30x2 + 3)

...
...

When the other linearly independant solution, which is an infinite series Qn(x), is nor-
malised appropriately it is called the Legendre function of the second kind [17]. Qn con-
verges in the interval (−1, 1) and diverges outside it. The Legendre function of second
kind of degree n = 0 is given by:

Q0(x) = x+
1

3
x3 +

1

5
x5 + · · ·

=
1

2
log
(1 + x

1− x

)
.

This becomes unbounded as x tends to ±1 from within the interval (−1, 1). The same is
true for Q1(x) and the other Legendre functions Qn(x)[17]. Thus, the only eigenfunctions
of Legendre’s equation which are bounded at ±1 are therefore the Legendre polynomials
Pn. The first few Legendre polynomials are as follows:

P0(x) = 1,

P1(x) = x,

P2(x) =
1

2
(3x2 − 1),

P3(x) =
1

2
(5x3 − 3x),

P4(x) =
1

8
(35x4 − 30x2 + 3),

P5(x) =
1

8
(63x5 − 70x3 + 15x).
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Figure 8: The first five Legendre polynomials

We have seen that only for certain endpoint conditions, the boundary term in (41) van-
ishes. Now we will consider those endpoint conditions for which this same boundary term
vanishes in limit, that is,

lim
α→a,β→b

[
p(x)[u(x)v′(x)− u′(x)v(x)]

]∣∣∣x=β

x=α
= 0. (42)

For example, the endpoint condition that p(a) = p(b) = 0 and the derivatives of the
eigenfunctions be bounded on [a, b], implies property (42). Therefore, for such endpoint
conditions, using lemma(2.2.2) we get that,

(λ− µ)

∫ b

a

ρ(x)u(x)v(x)dx = 0,

for any two square-integrable eigenfunctions u(x) and v(x), corresponding to eigenvalues
λ and µ. Using this discussion and the Cauchy-Schwartz Inequality, we can present the
following theorem for distinct eigenvalues.

Theorem 2.3.1. Square-integrable eigenfunctions u and v corresponding to distinct eigen-
values of a singular SL system are orthogonal to each other with weight function ρ when-
ever the boundary term vanishes in limit, that is (42).

Example. For a fixed m the Bessel DE:

[xu′]′ +
(
k2x− m2

x

)
u = 0,

in the interval 0 < x ≤ a together with the endpoint condition that for a solution u,
u(a) = 0 and u(x) be bounded as x→ a forms a singular SL system.
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Firstly, we identify the point x = 0 as a regular singular point [22] and then employ the
Frobenius method [22] of solving DEs. We get a solution of this DE as:

Jm(kx) =
∞∑
l=0

(−1)lk2l

(l!)(l +m)!
(x/2)2l+m. (43)

This particular solution (43) defines a function Jm(kx) which is called the Bessel function
of first kind of order m. Thus, the eigenfunctions of this singular SL system are the Bessel
functions[2] Jn(kjx), where kja is the jth zero of the Bessel function Jn(x) of order n.

Bessel functions of the first kind of order 0, 1, 2 with k = 1 are as follows:

J0(x) =
∞∑
l=0

(−1)l

(l!)2
(x/2)2l,

J1(x) =
∞∑
l=0

(−1)l

(l!)(l + 1)!
(x/2)2l+1,

J2(x) =
∞∑
l=0

(−1)l

(l!)(l + 2)!
(x/2)2l+2.

From theorem(2.3.1) it clearly follows that, the eigenfunctions of singular SL systems are
also orthogonal, provided that they are square-integrable relative to the weight function ρ.
A real-valued function f is said to be square integrable relative to the weight function[2]
ρ(x) > 0 over an interval I, when

∫
I
f 2(x)ρ(x)dx < 0. Thus, on applying theorem(2.3.1)

to the examples consisting the Legendre SL system and the Bessel SL system, we get the
following conclusions:

1. The orthogonality of relation of the Legendre polynomials Pn(x), that is, for m ̸= n∫ 1

−1

Pm(x)Pn(x)dx = 0. (44)

2. The orthogonality of relation of the Bessel functions, that is, for ki ̸= kj∫ a

0

xJn(kix)Jm(kjx)dx = 0, if Jn(kia) = Jm(kja) = 0. (44)

Note that the orthogonality relation of eigenfunctions, mentioned in theorem(2.3.1), de-
pends only on the endpoint condition, i.e., whether the endpoint condition implies the
boundary term to vanish.

Example. We consider the Hermite DE:

u′′ − 2xu′ + λu = 0, −∞ < x <∞.

Remark that the Hermite DE is not even an SL equation, because it is not self-adjoint.
Hence, it cannot be used to form an SL system. However, an SL system can be formed
using an equivalent Hermite SL equation : y′′ + [λ− (x2 − 1)]y = 0, −∞ < x <∞.
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On solving, we obtain a polynomial solution of degree n for λn = 2n. On appropriately
normalizing these, we get polynomials which are called the Hermite polynomials, denoted
as Hn(x).

The first few Hermite polynomials are as follows:

H0(x) = 1,

H1(x) = 2x,

H2(x) = 4x2 − 2,

H3(x) = 8x3 − 12x.
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−6
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−2
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6

H0(x)

H1(x)

H2(x)

H3(x)

X

Y

Figure 9: The first four Hermite polynomials

Forming any singular system using the Hermite DE will never result to an singular SL
system. But here, the Hermite polynomials of degree n are square-integrable eigenfunc-
tions and are also orthogonal with respect to the positive weight function e−x2

, that is,
for m ̸= n, we have ∫ ∞

−∞
e−x2

Hm(x)Hn(x)dx = 0. (44)

2.4 Qualitative analysis on the zeroes of eigenfunctions

From the example produced in the beginning of section(2.2) it is evident that the two
solutions of the regular SL system comprising the Helmholtz DE on R has an infinite
sequence of alternating zeroes distributed uniformly, and are given as follows where the
values in bold belongs to one eigenfunction and the rest belongs to another :

· · · < −3π

2
< −π < −π

2
< 0 <

π

2
< π <

3π

2
< · · · .

We shall investigate and present results to answer whether such behaviour is completely
accidental or not. We will also investigate the occurence that in a finite interval the num-
ber of zeroes of the eigenfunctions increases as their corresponding eigenvalue increases†.
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For any fixed value of the parameter λ the Sturm-Liouville differential equation takes the
following form (45). We will now go through a robust approach to study the solutions of
a self-adjoint second order DE

d

dx

[
P (x)

du

dx

]
+Q(x)u = 0; a < x < b (45)

where P (x) > 0 is C1 and Q is continuous.

Temporarily, we put aside the SL systems/ SL problems we were addressing and inves-
tigate equation(45) under the above considerations. For now, our primary objective is
to comment on the number of zeroes in the interval a < x < b, of the solution of (45).
Basically, we want to find out how frequently does the solutions of (45) oscillate on the
interval under consideration, that is, the number of zeroes they have for x ∈ (a, b).

2.4.1 Prüfer substitution

We use a slight modification of the Poincare’s phase plane[2]. We perform the Prüfer
Substitution in (45) as

P (x)u′(x) = r(x) cos θ(x); u(x) = r(x) sin θ(x) (46)

such that the newly introduced dependant variables r and θ are defined by the following
formulas

r2 = u2 + (Pu′)2, θ = arctan
( u

Pu′

)
= arccot

(Pu′
u

)
. (47)

The variable r is called the Amplitude and θ the Phase Variable. It can be verified
through some direct calculations that for non-zero r, the correspondences (Pu′, u) ⇌ (r, θ)
defined by (46) behave well so that global properties of a function like continuity and
differentiability in one plane remains preserved analogously in the other plane † . Further,
the uniqueness theorem[2] suggests that if u(x) = u′(x) = 0 for a certain x, then u ≡ 0,
the trivial solution. As P (x) > 0, so from (47), r is non-zero for non-trivial solutions of
(45).

Now we consider the relation (48) and on differentiating it we get

cot θ =
Pu′

u
(48)

=⇒ − csc2(θ) · dθ
dx

=
(Pu′)′

u
− P (u′)2

u2
= −Q(x)− 1

P (x)
cot2(θ)

=⇒ dθ

dx
= Q(x) sin2(θ) +

1

P (x)
cos2(θ) = F (x, θ). (49)

† Remark: In the formula for θ in (47), we use the arctan formula when Γ is close to the
Pu′-axis of the (Pu′, u)-phase plane and the arccot formula when it is close to the u-axis.
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Note that, in the case when θ ≡ 0 mod (π) the above derivation of (49) from (48)
will not work. However, in such case (49) can be derived by differentiating the relation
tan θ = u/Pu′.

On differentiating r2 = (Pu′)2 + u2,

2r · dr
dx

= 2uu′ + 2Pu′[P ′u′ + Pu′′]

=⇒ 2r · dr
dx

= 2uu′ − 2Pu′(Qu)

=⇒ 2r · dr
dx

= 2(Pu′)
[ 1
P

−Q
]
u

=⇒ dr

dx
= [

1

P
−Q

]
r sin(θ) cos(θ) =

1

2

[ 1
P

−Q
]
r sin(2θ). (50)

DE (49) and (50) together make a system of DEs and every non-trivial solution of this
system defines a unique solution of the DE(45) by Prüfer substitution (46). In this sense,
the system of DEs (49)-(50) and the DE(45) are equivalent.

The system (49)-(50) is called the Prüfer System associated with the self-adjoint DE (45).

DE(49) of the Prüfer system is a first-order DE in θ and x alone. Further, it also satisfies
a Lipschitz condition (due to lemma(I.I.II)) with the Lipschitz constant L, such that

L = sup
a<x<b

∣∣∣∂F
∂θ

∣∣∣ ≤ sup
a<x<b

|Q(x)|+ sup
a<x<b

1

|P (x)|
.

Here, it is evident that the Lipschitz constant L is finite in any closed interval where the
functions P (x) and Q(x) are continuous. Hence, the existence and uniqueness theorems[2]
imply that DE (49) has a unique solution θ(x) for an initial value θ(a) = γ, given that
both P (x) and Q(x) are continuous at x = a.

Now, with a known θ(x) we can get r(x) after a quadrature

r(x) = r(a) · exp
[1
2

∫ x

a

[ 1

P (t)
−Q(t)

]
sin(2θ)dt

]
.

Thus, note that each solution of the Prüfer system (49)-(50) depends on two constants,
r(a) the initial amplitude and γ = θ(a) the initial phase. Further, due to (46), changing
the intial amplitude r(a) just multiplies a solution u(x) by a constant factor. Therefore,
we conclude that the zeroes of any non-trivial solution of the linear second order self-
adjoint DEs like (45) can be located by just studying the DE (49), which is a first order
DE.

2.4.2 The Sturm Comparison Theorem

Due to the way of Prüfer substituion is designed, we now know that the zeroes of any
non-trivial solution u(x) of DE(45) occurs only at those x where the phase function θ(x)
in the Prüfer substitution done above, takes the values 0,±π,±2π, · · · . Notice that, at
each of these points cos2(θ) = 1, and by (49), dθ

dx
is positive. Geometrical interpretation
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of this is that, the curve Γ in the (Pu′, u)−plane, corresponding to a non-trivial solution
u of (45), will miss and rotate around the origin, and can cross the Pu′−axis for θ = nπ,
that too counterclockwise.

Equations of the form similar to DE(45), for which some of its solutions have two or more
zeros in the open interval (a, b) will be called oscillatory. Note that in this definition,
having one zero will not work as any equation of the form (45) has a solution with one zero.
Primarily, our concern is towards the conditions which guarantees that equation (45) is
oscillatory. The work presented in this section is based on the intention of getting an
idea about the distribution of zeroes of non-trivial solutions of DE(45), which eventually
should help us in knowing about their number of zeroes in a given interval.

Now, let us consider the following DE with the same form of DE(49), but having co-
efficients Q1(x) ≥ Q(x) and P1(x) ≤ P (x) from the same respective function classes,
as:

dθ

dx
= Q1(x) sin

2(θ) +
1

P1(x)
cos2(θ) = F1(x, θ). (51)

Note that due to the choices of the coefficients in an interval I, F1(x, θ) ≥ F (x, θ) in the
same interval. Further, due to these considerations we also get a similar DE to DE(45)
as,

d

dx

[
P1(x)

du

dx

]
+Q1(x)u = 0; a ≤ x ≤ b. (52)

Assume θ1(x) is a non-trivial solution of DE(51) and θ(x) is a non-trivial solution of
DE(49), where a, b ∈ R are any two consecutive zeroes of u(x). WLOG, say θ(a) = 0
and θ(b) = π. Due to the discussion done in the first paragraph of this subsection, which
says that at integral multiples of π dθ/dx is positive, we know that θ(b) has to be π and
not −π, given that θ(a) = 0.

CASE - I Let us now first consider case when θ1(a) > θ(a). Due to corollary(I.I.V), we
get the relation θ1(x) > θ(x) throughout the interval [a, b]. Now if 0 < θ1(a) < π along
with π < θ1(b), then due to continuity of θ1(x) and by Intermediate Value Theorem we see
that ∃x∗ ∈ (a, b) ∋ θ1(x

∗) = π. This implies the occurence that between any two zeroes
of a non-trivial solution u(x) of DE(45), there lies at least one zero of every non-trivial
solution u1(x) of DE(52). Further, when we have have π < θ1(a) along with θ1(b) < 2π,
we make a construction as θ2 : [a, b] → (0, π) such that θ2(x) = θ1(x) − π. Here again
applying IMVT we get x0 ∈ (a, b) such that θ2(x0) = θ(x0). As for a 0 < h, we have
θ2(x0+h) < θ(x0+h), so clearly θ′1(x0) = θ′2(x0) < θ′(x0), which is a major contradiction.
By this, we exhaust all considerations under this case.

CASE - II We now consider θ1(a) = θ(a). Using Comparison Theorem(I.I.IV), we get
that in [a, b] θ1(x) ≥ θ(x). At the right endpoint, the relation θ1(b) ≥ θ(b) again leads
to the occurence mentioned above. Next is the subcase when θ1(b) = θ(b). For this, we
claim that θ1(x) ≡ θ(x) in [a, b]. On the contrary let us assume a point x0 ∈ (a, b) ∋
θ1(x0) > θ(x). Again using corollary(I.I.V) on the interval (x0, b) we get θ1(b) > θ(b), a
contradiction. This proves our claim, and we can see that in this scenario the mentioned
occurence does not happen. Observe that θ1(x) ≡ θ(x) in [a, b] if and only if we have
u(x) ≡ c · u1(x), it follows that the above mentioned occurence about the zeroes of u(x)
and u1(x) does not happen whenever we have u(x) ≡ c · u1(x).
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Proceeding ahead, now we go through different cases for the condition θ1(x) ≡ θ(x). For
the first case, when θ(x) ≡ θ1(x) is neither an integer multiple of π nor of π/2, this
condition leads to P1 ≡ P and Q1 ≡ Q. The second case when θ(x) ≡ θ1(x) is an
integer multiple of π, is ruled out as it vacously implies that both u(x) and u1(x) are
trivial solutions of the relevant DEs. Finally in the third case when θ(x) ≡ θ1(x) is an
odd-integer multiple of π/2, we only get Q1 ≡ Q and hence we cannot confirm whether
u(x) ≡ c · u1(x) holds or not. These discussions completes the proof of a well-celebrated
result, which we present as the following theorem.

Theorem 2.4.1. Sturm Comparison Theorem Let P (x) ≥ P1(x) > 0 and Q1(x) ≥
Q(x) in the DEs

d

dx

(
P (x)

du

dx

)
+Q(x)u = 0,

d

dx

(
P1(x)

du1
dx

)
+Q1(x)u1 = 0.

Then, between any two zeroes of a non-trivial solution u(x) of the first DE, there lies
at least one zero of every real solution of the second DE, except when u(x) ≡ c · u1(x).
Further, this occurence does not happen when P1 ≡ P and Q1 ≡ Q, except possibly in
intervals where Q1 ≡ Q ≡ 0.

The Sturm Separation Theorem(I.II.I), which says about the alternating behaviour of
zeroes of linearly independent solutions of DE(45), follows as a corollary, by comparing
two linearly independent solutions of the same DE. Although, the proof given in Ap-
pendix(I.II) doesn’t imitate the arguments made in this section. In the context of SL
equations, since weight functions ρ(x) > 0, Q(x) ≡ Q1(x) clearly implies that λ = λ1.
Therefore, instead of considering two different self-adjoint DEs we can present the fol-
lowing lemma concerning a single SL equation.

Lemma 2.4.2. When u(x) and v(x) are eigenfunctions of an SL system corresponding
to distinct eigenvalues λ and µ respectively. If µ ≥ λ, then between any two zeroes of
u(x), there lies at least one zero of v(x).

Example. Let us revisit the example discussed in the beginning of section(2.2), where
sin(nx) and cos(nx) were two eigenfunctions for eigenvalue λ = n2, squares of integers.
Figure(10) below visualises these eigenfunctions for λ1 = 1 and λ4 = 16. It can be
seen that between any two zeroes of the blue curves, there lies atleast one zero of their
corresponding orange curves, theorem(2.4.2) in effect.

−4 −3 −2 −1 1 2 3 4

−1

1

sin(x)

sin(4x)

cos(x)

cos(4x)

X

Y

Figure 10: An example to visualize Sturm-Comparison Theorem(2.4.2)
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Using these arguments, we can deduce a result concerning the number of maxima/minima
of non-trivial solutions u(x) of DE(45). For self-adjoint DEs (45), whenever θ = (2n+1)π

2
,

we have seen above that the condition Q(x) > 0 implies that dθ
dx
> 0. Since, P (x) > 0,

from (49) it is clear that, θ = (2n + 1)π
2
, that is, cos θ = 0 iff u′(x) = 0. It follows that,

if Q(x) > 0, then any non-trivial solution of (46) has exactly one local maxima or local
minima between any two of its consecutive zeroes.

Definition 2.4.3. Isolated zeroes A function f : I → R is said to have an isolated
zero at x0 ∈ I, if f(x0) = 0 and there exists a neighborhood U of x0 such that f(x) ̸= 0
for all x ∈ I ∩ U \ {x0}.

Remark that, in the second subcase of discussions done in the paragraph preceeding
Theorem(2.4.1), we find dθ

dx
to be positive, whenever sin θ(x) is zero. So, by continuity

of sin and θ, it follows that in a neighborhood of such points, θ(x) is strictly increasing.
Therefore, we can also conclude that non-trivial solutions of self-adjoint DEs (45), or in
particular eigenfunctions of SL equations only have isolated zeroes.

Before proceeding ahead for the next section, note that another major takeaway from
the discussions made in this section, which can be easily remembered although might
be a bit imprecise is that, as Q increases and P decreases, the number of zeros of every
non-trivial solution of DEs like (45) increases. Figure(10) and the example above, in a
way, does a fair advocacy of this result.

2.4.3 Sturm Oscillation Theorem

Now that we have considered the zeroes of solutions of general self-adjoint DEs, we now
try to explore the variations of the number of zeroes of the eigenfunctions of a regular
SL system (38)-(39), with its eigenvalue λ.

There by, setting P (x) = p(x) and Q(x) = λρ(x) − q(x), in (39) we obtain (45). Since
u = 0 iff sin θ = 0 in the Prüfer substitution (46), the zeroes of any solution of (38) are
the points for which θ(x) = 0,±π,±2π,±3π, · · · ,±nπ, such that θ is a solution of the
associated Prüfer equation:

dθ

dx
=
[
λρ(x)− q(x)

]
sin2 θ +

1

p(x)
cos2 θ, a ≤ x ≤ b. (53)

As we now consider our SL system to be regular, here p(x) > 0, ρ(x) > 0 ∀x ∈ [a, b].

Let θ(x, λ) be the solution of (53) which satisfies the initial condition θ(a, λ) = γ, ∀λ and
for a fixed γ. Here, due to the Prüfer substitution, any fixed γ is determined by

tan γ =
u(a)

p(a)u′(a)
=

−α′

p(a)α
, 0 ≤ γ < π.

Note that, the constants α and α′ come from the initial condition (separated endpoint
condition) αu(a) + α′u′(a) = 0. For a fixed γ, we shall now explore the behavior of the
function θ(x, λ) for −∞ < λ < ∞ on the domain [a, b]. Due to the Corollary(I.I.VI) or
the comparison theorems presented in the Appendix(I.I), we get the following lemma.
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Lemma 2.4.4. For a fixed x > a, θ(x, λ) is a strictly increasing function of the variable
λ.

Proof. Let λ1 < λ2, and arbitrarily we choose and fix an x1 > a. We consider the
following two DEs in [a, b]

dθ

dx
= [λ1ρ(x)− q(x)] sin2 θ +

1

p(x)
cos2 θ︸ ︷︷ ︸

=F (x,θ)

,

dθ

dx
= [λ2ρ(x)− q(x)] sin2 θ +

1

p(x)
cos2 θ︸ ︷︷ ︸

=G(x,θ)

,

along with the initial conditions θ(a, λi) = γ, for i = 1 and 2 respectively, such that
0 ≤ γ < π. As we are under the consideration of regular SL systems, we have ρ(x) > 0.
Due to this, here we get F (x, θ) < G(x, θ). Thus using Corollary(I.I.VI) we get that
either θ(x1, λ1) < θ(x1, λ2) or θ(x, λ1) ≡ θ(x, λ2) ∀x ∈ [a, x1]. The later scenario is a
contradiction as distinct I-order ODEs cannot have identical solutions. Therefore, this
completes the proof.

Now say xn is a point in the domain such that θ(xn, λ) = nπ, and it follows that from
DE(53) that

dθ(x, λ)

dx

∣∣∣∣∣
x=xn

=
1

p(xn)
> 0.

Hence for a fixed λ, θ(x, λ), a function in x, is increasing where it crosses the line θ = nπ.
Thus, θ(x, λ) stays above the line θ = nπ for x > xn. The result concluded from this
discussion can be presented as the following lemma.

Lemma 2.4.5. Suppose that for some xn > a, θ(xn, λ) = nπ, where n ∈ Z≥0. Then
θ(x, λ) > nπ forall x > xn.

θ

x
a b

4π

3π

2π

π

0

γ

Figure 11: The behavior of θ, the Phase Variable of the Prüfer substitution.

41



Figure(11) depicts the behavior of θ(x, λ), the Phase Variable of the Prüfer substitution.
It is not in general a monotonically increasing function, but once it reaches the value nπ
at a certain point xn, with accordance to lemma(2.4.5) it remains greater than nπ for
x > xn. We define xn(λ) to be the smallest of all x such that θ(x, λ) = nπ. We wish to
see the well-definedness of xn(λ) for a fixed n but a sufficiently large enough λ.

Note that the coefficient function q(x), p(x) and ρ(x) are all C0 functions and since we
are considering a regular SL system, we are working on a compact interval, say [a, b]. So,
let qM and pM be the maxima of q(x) and p(x), respectively, and let ρm be the minimum
of ρ(x) for a ≤ x ≤ b. On solving the following II-order constant coefficient ODE :

pMu
′′ + (λρm − qM)u = 0, λ >

qM
ρm

, (54)

we get that for k2 = (λρm − qM)/pM the function sin kx is a solution of (54). On
translating this function by a we get u1(x) = sin k(x − a), which is again a solution of
(54) and also has a root at x = a. Here, it is easy to see that successive zeroes of u1(x) are
all distributed uniformly with a distance of π/k = π

√
pm/(λρm − qM) from each other.

By the Sturm Comparison Theorem(2.4.1), it follows that any non-trivial solution u(x) of
the SL equation(38) must have at least one zero between any two zeroes of the function
u1(x). Proceeding a calculation starting with the relation nπ/k < b − a will fetch us
λmin = pM

ρm
[ nπ
b−a

]2 + qM
ρm

, the minimum value which λ must exceed so that u1(x) has atleast

n zeroes in (a, b). Since it is now established that, for any given n ∈ N, u1(x) has n zeroes
on (a, b) when λ is sufficiently large, it follows that u(x) also has at least n zeroes in (a, b)
for sufficiently large λ. Therefore, θ(x, λ) admits the value nπ for sufficiently large λ.
Thus, θ(x, λ) being a continuous function in both x and λ, must take all values between
θ(a, λ) = γ < π and nπ. Hereby, we conclude that xn(λ) is well-defined for sufficiently
large λ.

After using Theorem(I.III.II) in Appendix(I.III), we find θ(x, λ) to be continuous in both
x and λ for a ≤ x ≤ b and −∞ < λ < ∞. Now that it is established that θ(x, λ) is
well-defined even for sufficiently large λ, we use Lemma(2.4.4). It tells us that θ(x, λ) is
a strictly increasing function of λ. It suffices to conclude that, xn(λ) is a monotonically
decreasing function of λ.

Further, observe that the point xn(λ) for u(x) is located between (n−1)th and nth zero of
u1(x). As both of these zeroes of u1(x) tend to a as λ tends to ∞, we conclude that xn(λ)
tends to a as λ tends to ∞. All these discussions completes the proof for the following
lemma.

Lemma 2.4.6. For a given fixed n ∈ Z>0, and sufficiently large λ, the function xn(λ) is
defined and continuous. Further, it is a decreasing function of λ and we have

lim
λ→∞

xn(λ) = a.

Due to Lemma(2.4.6) above, we now know that even for a sufficiently large λ, we have
the smallest number xn < x such that θ(x, λ) = nπ. Note that this happens for every
positive integer, i.e., it is thus true for all n ∈ Z>0. Here, we now use the result from
lemma(2.4.6) that limλ→∞ xn(λ) = a and lemma(2.4.5), to deduce that for a fixed x > a,
θ(x, λ) → ∞ as λ→ ∞.
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The next natural step is to comment on the behaviour of θ(x, λ) when λ → −∞. Let
us now consider γ < γ1 < π and ϵ < 0. For x1 ∈ (a, b], the slope of the segment in
xθ−plane formed by joining the points (a, γ1) and x1, ϵ equals (ϵ− γ1)/(x1 − a). Observe
that this slope is finite and hence, for any sufficiently large negative λ and for a point
(x, θ) on this segment, the slope of θ(x, λ),as given by (53) will be less than the slope
of the segment. It follows that, for sufficiently large negative λ, the function θ(x, λ) will
lie below the segment for a ≤ x ≤ x. By this, we can conclude that θ(x1, λ) < ϵ for
sufficiently large negative λ. Recall that, using the arguments used as a proof for lemma
(2.4.5), θ(x1, λ) > 0. Hence, it follows that |θ(x1, λ)| < ϵ. Since, x1 ∈ (a, b] and ϵ > 0 were
both chosen arbitrarily, we can use these above arguments along with lemmas (2.4.4),
(2.4.5) and (2.4.6) as a complete proof of the well-celebrated Sturm Oscillation Theorem,
which is stated as follows.

Theorem 2.4.7. Sturm Oscillation Theorem The solution θ(x, λ) of the DE(53)
satisfying the initial condition θ(a, λ) = γ, 0 ≤ γ < π for each λ, is a continuous and
strictly increasing function of λ for any fixed x ∈ (a, b]. Moreover, for a < x ≤ b we have

lim
λ→∞

θ(x, λ) = ∞ and lim
λ→−∞

θ(x, λ) = 0.

Due to the Sturm Oscillation Theorem (2.4.7) we now know that in a finite interval, any
non-trivial solution of a SL equation will have an incresing frequency of oscillation, thus
increasing number of zeroes for an increasing value of λ. Once again, figure(10) and its
corresponding example does a fair visual advocacy of this takeaway. Proceeding ahead,
we know wish to have an estimate on the positions of the zeroes of a non-trivial solution
of a regular SL equation (38), by comparing it with (54) and

pmu
′′ + (λρM − qm)u = 0, (55)

where pm and qm are the minima of p(x) and q(x) respectively, and ρM the maxima of
ρ(x) for x ∈ [a, b].

Let us now consider solutions of (54) and (55) with initial condition u(a)/p(a)u′(a) =
tan γ. Through inspection, we get their zeroes to be

a+
nπ − γ√

λρm − qM/pM
and a+

nπ − γ√
λρM − qm/pm

respectively. Applying the Sturm Comparison Theorem(2.4.1) twice, we complete the
proof of a result which we present as the following corollary.

Corollary 2.4.8. For each n ∈ Z>0, let xn be the nth zero of the non-trivial solution of
the SL equation(38). Then we have the following estimate on the position of xn :√

pm
λρM − qm

≤ xn − a

nπ − γ
≤
√

pM
λρm − qM

.

† Remark: All the qualitative analysis done in the span of Section(2.4) is also celebrated
by the name of Oscillation Theory. Sources [8], [26] provides a good survey of important
applications of Prüfer substitution and also provides a robust presentation of Oscillation
Theory.
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2.4.4 Sturm Convexity Theorem - an application

In this section we present and discuss the Sturm Convexity Theorem, which is one of
many significant applications of the Sturm Oscillation Theory, in particular the Sturm-
Comparison Theorem(2.4.1) we have discussed above.

Before we dive directly into the mentioned result, let us state this following result which
will be used to complete the proof of the main result of this section. Note that the proof
of the following theorem has been skipped here, but it can be found at [12], [27], which
itself uses Sturm Comparison Theorem(2.4.1).

Theorem 2.4.9. Let y′′ +Q(x)y = 0 be a second-order DE, with Q(x) being continuous
in (a, b). Let y(x) be a non-trivial solution of this DE in (a, b). Let xk < xk+1 < · · ·
denote consecutive zeros of y(x) in (a, b) arranged in an increasing order. Then

1. If ∃ QM > 0 such that Q(x) < QM in (a, b) then

∆xk = xk+1 − xk >
π√
QM

.

2. If ∃ Qm > 0 such that Q(x) > Qm in (a, b) then

∆xk = xk+1 − xk <
π√
Qm

.

Now, similar to the discussions in the section of Sturm Comparison Theorem let us
consider the DE u′′+Q(x)u = 0 in an interval (a, b), where Q is continuous. Further, say
u(x) is a non-trivial solution of this DE, and x1 < x2 < · · · < xk < xk+1 < xk+2 < · · ·
are its consecutive roots in (a, b).

We proceed ahead with the assumption that Q is strictly increasing and is positive
in (a, b). So, in the interval (xk, xk+1) we have Q(x) < Q(xk+1), and in the interval
(xk+1, xk+2) we have Q(x) > Q(xk+1). Deploying Theorem(2.4.9), we get

∆xk = xK+1 − xk >
π√

Q(xk+1)
, and ∆xk+1 = xk+2 − xk+1 <

π√
Q(xk+1)

.

From here, it is follows that xk+2−xk+1 < xk+1−xk. Similarly, using analogous arguments
and usage of theorem(2.4.1), it can be proven that for Q strictly decreasing instead of
being strictly increasing, we get xk+2 − xk+1 > xk+1 − xk.

This discussion leads to the proof of a specific case, which when generalised by dropping
the assumption that Q is positive, leads to become the Sturm Convexity Theorem(2.4.10).

Theorem 2.4.10. Let u′′ + Q(x)u = 0 in (a, b) be a second order DE in normal form,
such that Q(x) is conitnuous in (a, b). Let u(x) be a non-trivial solution of this DE with
x1 < x2 < · · · < xk < xk+1 < xk+2 < · · · as its roots in (a, b). Then

1. If Q(x) is strictly increasing in (a, b) then xk+2 − xk+1 < xk+1 − xk.

2. If Q(x) is strictly decreasing in (a, b) then xk+2 − xk+1 > xk+1 − xk.
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In summary, the major takeaway from Sturm Convexity Theorem(2.4.10) is that for
SL equation u′′ + Q(x)u = 0 in the normal form, when compared with u′′ + m2u = 0
u′′ +M2u = 0 in (a, b) such that Q is continuous and m2 < Q(x) < M2 for 0 < m < M ,
the zeroes x1 < x2 < x3 < · · · of a non-trivial solution u(x) satisfy

π

M
< xi+1 − xi <

π

m
, i = 1, 2, 3, · · · .
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CHAPTER 3: STURM-LIOUVILLE SYSTEMS - II

3.1 Introduction

After ending some necessary and crucial discussions on SL systems in the last chapter
we now intend to dive deep into the theory of SL systems. Here onwards, our primary
aim would be to show that eigenfunctions of any regular SL systems form a basis of
appropriate L2 spaces. In this chapter, we will present and discuss topics which will
eventually lead to and aid us to establish our primary aim.

3.2 Sequence of eigenvalues

Till now, throughout all the examples of SL systems discussed, we have considered discrete
eigenvalues. Further, due to the contents in Section(2.4), we now know the behaviour
of eigenfunctions even for sufficiently large eigenvalues λ. Now in this section, we will
explore the existence of an infinite series of eigenvalues and, consequently, sequence of
eigenfunctions of a regular SL system having the following separated endpoint conditions

A[u] = αu(a) + α′u′(a) = 0, B[u] = βu(a) + β′u′(a) = 0. (56)

We begin by transforming the endpoint conditions (56) into equivalent endpoint con-
ditions for the phase function θ(x, λ) of the Prüfer system (49)-(50), associated with
the DE(38). For α ̸= 0, the phase function θ(x, λ) must satisfy the initial condition
θ(a, λ) = γ such that γ is the smallest non-negative number so that 0 ≤ γ < π, where
p(a) tan γ = −α′/α. For α = 0, we choose γ = π/2. Similarly, we select 0 < δ ≤ π such
that p(b) tan δ = −β′/β. By this, we have the achieved the equivalence we were trying
to establish. A solution u(x) of the DE (38) for a ≤ x ≤ b is an eigenfunction of the
regular SL system obtained by imposing the endpoint condition (56), if and only if, for
the corresponding phase function defined by (46), we have

θ(a, λ) = γ, θ(b, λ) = δ + nπ, n = 0, 1, 2, 3, · · · (57)

0 ≤ γ < π, 0 < δ ≤ π.

It is clear that, any value of λ for which conditions (57) are satisfied, is an eigenvalue of
the given regular SL system, and conversely. Let θ(x, λ) be the solution of (53) for the
initial condition θ(a, λ) = γ.

Example. Plots in Figure(12) shows the graph of the phase function θ(x, λ) correspond-
ing to the DE u′′+λu = 0 for various values of the parameter λ. One can inspect and find
that for all λ, the slope of the graphs for θ ≡ 0(mod π) is 1/p(x) and for all other values
of θ, the slope of the graphs tends to infinity with λ. The waviness of the graphs hence
expresses the fact that 1/P (x) in (49) for u′′ + λu = 0, is independant of the parameter
λ.
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(a) For initial value γ = 0.

(b) For initial value γ = π/2.

Figure 12: Plot for θ(x, λ) corresponding to u′′ + λu = 0, for varying λ ‡ .

‡ Figure(12) was generated by plotting the solutions of the corresponding parametric DE

with parameter λ using Wolfram Mathematica. The entire process is due to computational

methods and the code for the same can be found at the GitHub Repo with the link - https:

//github.com/Shubhajit412/THEORETICAL-AND-COMPUTATIONAL-CONSIDERATIONS-OF-STURM-LIOUVIL

LE-SYSTEMS.

48

https://github.com/Shubhajit412/THEORETICAL-AND-COMPUTATIONAL-CONSIDERATIONS-OF-STURM-LIOUVILLE-SYSTEMS
https://github.com/Shubhajit412/THEORETICAL-AND-COMPUTATIONAL-CONSIDERATIONS-OF-STURM-LIOUVILLE-SYSTEMS
https://github.com/Shubhajit412/THEORETICAL-AND-COMPUTATIONAL-CONSIDERATIONS-OF-STURM-LIOUVILLE-SYSTEMS


Due to Lemma(2.4.4), θ(b, λ) is an increasing function of λ. Further due to Lemma(2.4.5),
we have θ(b, λ) > 0. So as λ increases from −∞, there exists a first eigenvalue λ0, for
which the second condition in (57) gets satisfied, i.e., we have θ(b, λ0) = δ. Gradually, as
λ increases, there is an infinite sequence {λn} for which the second boundary condition
in (57) is satisfied, i.e., θ(b, λn) = δ + nπ, for some given n ∈ N. Note that each of this
eigenvalues λn gives an eigenfunction

un(x) = rn(x) sin θ(x, λn) (58)

of the concerned SL system. Moreover, due to Sturm Oscillation Theorem(2.4.7), the
eigenfunctions corresponding to λn, has exactly n zeros in the interval (a, b).

Also by Uniquesness Theorem for II-order DE [2], we know that, any two solutions of the
DE(38) satisfying the same initial condition αu(a) + α′u′(a) = 0 are linearly dependant.
Hereby, the conclusion of these discussions can be presented in the form of the following
theorem.

Theorem 3.2.1. Any regular SL system has an infinite sequence of real eigenvalues
λ0 < λ1 < λ2 < · · · with limn→∞ λn = ∞. The eigenfunction un(x) belonging to the
eigenvalue λn has exactly n zeros in the interval (a, b) and is uniquely determined upto
multiplication by a constant.

3.3 The Liouville Normal Form

We consider regular SL equation(38) and wish to simplify it considerably, through the
following changes in the dependant and independent variables

u = y(x)w, t =

∫
h(x) dx; y > 0, h > 0. (59)

Notice that if the functions y and h are positive and continuous in the given interval,
then the first substitution in (59) leaves the location of zeros of any non-trivial solution
unchanged, while the second one distorts the range of the independent variable. As the
position of zeroes does not change, from Corollary(2.4.8) we use the inferrence that the
bounds on the position of zeroes are independent of the substitution (59), thus the sub-
stitutions leaves the number of zeros of a solution in corresponding intervals unchanged.

From the second equation in (59), we obtain the identity d/dx = h(x)d/dt, and then use
it obtain an equivalent DE to (38) in w and t. After substituting the above identity in
DE(38), we get

h[hp(yw)t]t + (λρ− q)yw = 0

h{pyhwtt + [(hp)ty + 2hpyt]wt + (hpyt)tw}+ (λρ− q)yw = 0.

Here the notation [·]t is used to represent d[·]/dt. Now we divide the last equation by
pyh2, the coefficient of the term wtt to obtain the following DE equivalent to DE(38)
when h, y ∈ C2.

wtt +
1

pyh
[(hp)ty + 2hpyt]wt +

[ 1

pyh
(hpyt)t +

1

h2p
(λρ− q)

]
w = 0. (60)
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In equation (60), the term λ(ρ/ph2)w can be reduced to λw iff h2 = ρ/p. Also observe
that, the coefficient of wt goes to zero iff (hp)t/hp = −2yt/y, which can be implied from
the relation y2 = 1/hp. Therefore, a much simplified equivalent version of DE(38) in w
and t can be deduced by considering the following choices

u = w/ 4
√
p(x)ρ(x), t =

∫ √
ρ(x)/p(x) dx. (61)

We call substitution (61) as the Liouville’s substitution, due to which we can reduce
DE(38) to Liouville normal form. As by definition of a regular SL equation, we have
both p(x) > 0 and ρ(x) throughout the working interval, substitution (61) makes h(x)
and y(x) postive and C2, whenever p and ρ are C2. We can present the following theorem,
keeping the above discussion as a mathematically legit evidence.

Theorem 3.3.1. Liouville’s substitution (61) transforms the regular SL equation (38)
with coefficient functions p, ρ ∈ C2 and q ∈ C into the Liouville normal form

d2w

dt2
+ [λ− q̂(t)]w = 0, (62)

where

q̂ =
q

ρ
+

1
4
√
pρ

· d
2

dt2
[ 4
√
pρ]. (63)

We can deduce the following alternative rational form of q̂ by evaluating the second
derivative in (63) using the identity d/dt = (p/ρ)1/2d/dx

q̂ =
q

ρ
+

p

4ρ

[(
p′

p

)′

+

(
ρ′

ρ

)′

+
3

4

(
p′

p

)2

+
1

2

(
p′

p

)(
ρ′

ρ

)
− 1

4

(
ρ′

ρ

)2
]
. (64)

Moreover, if DE (38) is defined on an interval [a, b), and t is given by the definite inte-
gral

∫ x

a

√
ρ(s)/p(s) ds then the equivalent DE(62) is defined in the interval [0, c) such

that
∫ b

a

√
ρ(x)/p(x) dx. Therefore, an SL equation (38) with p, ρ ∈ C2 and q ∈ C is

transformed by Liouville’s substitution into an SL equation(62) with q̂ ∈ C, as the di-
nominator in (63) remains bounded away from 0. Hence, we can formulate and present
the following corollary.

Corollary 3.3.2. Liouville’s reduction (61) transforms regular SL systems again into
regular SL systems, separated and periodic boundary conditions again into separated and
periodic boundary conditions. Further, the transformed system has the same eigenvalues
as the original system.

An important question which must be answered is, how does the above introduced Liou-
ville’s transformation affect the orthogonality of eigenfunctions? Let u(x) and v(x) be
transformed into the functions f(x) and g(x) by Liouville’s reduction (61). Using the
relevant identities from the discussions above, we get∫ c

0

f(t)g(t)dt =

∫ b

a

u(x)v(x)
√
p(x)ρ(x)

√
ρ(x)

p(x)
dx =

∫ b

a

u(x)v(x)ρ(x)dx. (65)

Hence, using the above identity (65), we infer the following corollary.
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Corollary 3.3.3. Liouville’s reduction (61) transforms functions orthogonal with weight
ρ(x) again into orthogonal functions but with unit weight.

Here is an example to demonstrate how easy sometimes it becomes to deal with certain
SL systems with Liouville’s reduction.

Example. The following Bessel Equation is a special case of SL equation (38), where
p(x) = ρ(x) = x, q = n2/x.

(xu′)
′
+

(
k2x− n2

x

)
u = 0.

Thus, Liouville’s reduction (61) is u = w/
√
x and x = t, which leads to the following

equivalent DE
d2w

dx2
+

[
k2 −

n2 − 1
4

x2

]
w = 0, w = x1/2u.

For n = 1
2
, the above becomes the trigonometric DE w′′ + k2w = 0 which along with

a periodic boundary condition, has {1, cos kx, sin kx} (for k = 1, 2, · · · ) as a basis of
solution. Since, we know that J1/2(0) = 0, it follows that J1/2(x) is a constant multiple
of sin x/

√
x.

3.4 Modified Prüfer substitution

In the last section, we have seen that we can simplify the form of any regular SL equation
through Liouville’s transformation (61), and Corollary(3.3.2) further gaurantees that the
SL system, in principle remains the same even after the transformation. Now, we intend to
obtain asymptotic formulas for the nth eigenfunction un(x), valid for large n, by applying
a modification of the Prüfer substitution to the Liouville normal form of an SL system.

As mentioned, using (61) or Liouville’s substituion in general, any regular SL system can
be transformed into another regular SL system consisting of the equation

u′′ + [λ− q(x)]u = u′′ +Q(x)u = 0, Q(x) = λ− q(x), (66)

and separated boundary conditions of the same form

αu(a) + α′u′(a) = 0, βu(b) + β′u′(b) = 0. (67)

The constants α, α′, β, β′ usually gets changed, but the relations α2 + α′2 ̸= 0 and β2 +
β′2 ̸= 0 remains the same. Due to Corollary(3.3.2), the eigenvalues of the new system
are the same as those of the original system, and the corresponding eigenfunctions are
obtained for the Liouville normal form through the Liouville substitution. Therefore it
suffices to consider system (66)-(67) in order to study the distribution of eigenvalues and
magnitude of the eigenfunctions.

Here onwards, we will assume Q(x) > 0 in [a, b], i.e., in (66) λ > q(x) and also Q ∈ C1.
Now, we introduce R(x, λ) and ϕ(x, λ), the new Amplitutde variable function and the
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new Phase variable function, respectively such that they are defined in terms of a given
non-trivial solution u(x, λ) of (66) by the equations

u =
R
4
√
Q

· sinϕ, u′ = R 4
√
Q cosϕ. (68)

We will call equations in (68) to be the nodified Prüfer substitution for the DE(66). Now,
naturally, we shall derive a pair of DEs for R and ϕ, so that they together constitute to
be equivalent to DE(66). Here we have

cotϕ =
1√
Q

u′

u
, R2 =

√
Qu2 +

1√
Q
u′2. (69)

Differentiating the first relation in (69) and using u′′ = −Qu, we obtain

(csc2 ϕ)ϕ′ =
Qu2 + u′2

Q1/2u2
− 1

2

Q′

Q3/2

u′

u
.

Now, using the second equation and then multiplying by sin2 ϕ, this will get simplfied to

(csc2 ϕ)ϕ′ =
R2

u2
− 1

2

Q′

Q
cotϕ

ϕ′ = Q1/2 − 1

4

Q′

Q
sin 2ϕ.

Moving ahead, we differentiate the second equation in (68) and obtain the identity

2RR′ = 2Q−1/2 (Quu′ + u′u′′) +

(
Q′

2Q

)(
Q1/2u2 −Q−1/2u′2

)
.

Above the first term must vanish as we have the relation u′′ = −Qu, which leaves us with

R′

R
=
Q′

4Q

(
sin2 ϕ− cos2 ϕ

)
=

−Q′

4Q
cos 2ϕ.

Note that, equations in (69), and all the calculations succeeding them are only valid for
u ̸= 0. Whenever u = 0, we set tanϕ =

√
Qu/u′ and proceed similarly.

Thus, in terms of λ and q, the modified Prüfer system is as follows :

ϕ′ =
√
λ− q +

q′

4(λ− q)
sin 2ϕ (70)

R′

R
=

q′

4(λ− q)
cos 2ϕ. (71)

Clearly, to every non-trivial solution of (66) there is a corresponding solution of the
modified Prüfer system (70)-(71), and conversely. Further, we also know that R > 0,
unless R vanishes identically.

Before immediately presenting the result which says that Equations (70)-(71) determines
the asymptotic behaviour of the solutions of (66) as λ → ∞, we must get familair with
some properties of the O (Big-oh) notation, particularly O(1).
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1. We the basic algebraic properties

O(1) +O(1) = O(1); O(1) · O(1) = O(1);

and for any constant k ∈ R, k · O(1) = O(1).

2. If α, β ∈ R such that α ≤ β, then we have

O(1)

λα
+

O(1)

λβ
=

O(1)

λα
.

3. If q(x) is any bounded function of x, then by Taylor’s formula[1], we have

[λ− q(x)]α = λα
[
1− q(x)

λ

]α
= λα − αq(x)λα−1 +O(1)λα−2, as λ→ ∞.

Theorem 3.4.1. Let ϕ(x, λ) and R(x, λ) be solutions of the system (70) and (71), where
q(x) ∈ C1 is bounded. Then as λ→ ∞,

ϕ(x, λ) = ϕ(a, λ) +
√
λ(x− a) +

O(1)√
λ

(72)

R(x, λ) = R(a, λ) +
O(1)

λ
. (73)

Proof. For all λ for which we have |q(x)| < λ on [a, b], we have q/(λ− q) = O(1)/λ and
also using property 2. above we have the following,

q′

λ− q
=
q′

λ

(
1 +

O(1)

λ

)
=
q′

λ
+

O(1)

λ2
,√

λ− q =
√
λ
(
1− q

λ

)1/2
=

√
λ− q

2
√
λ
+

O(1)

λ3/2
.

Observe that ϕ1(x, λ) = ϕ(a, λ) +
√
λ(x − a) and R1(x, λ) ≡ R(a) are two particular

solutions of the following DEs,

ϕ′ =
√
λ and (logR)′ = 0.

correspondingly. Now we compare the solutions of DE (70) and (71) with the above
mentioned solutions ϕ1 and R1, one comaprison at a time. For the first comparison,
we select ϵ = O(1)/

√
λ, and replace x and y with the functions ϕ(x, λ) and ϕ1(x, λ),

respectively. As the initial conditions are same, i.e., ϕ(a, λ) = ϕ(a, λ), we get |ϕ(x, λ) −
ϕ1(x, λ)| ≤ O(1)/

√
λ, further using properties of O(1), equation (72) follows.

Next, we go for the second comparison, which needs a slight manipulation. Note that, us-
ing Taylor’s formula we already have the identity eO(1)/λ = 1+O(1)/λ. In the Comparison
Theorem(I.III.II), for ϵ = O(1)/λ, we get the inequality | logR(x, λ)− logR1(x, λ)| ≤ ϵ.

The calculations proceeds as follows :
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=⇒ log
[ R(x, λ)
R1(x, λ)

]
= ϵ

=⇒ e
log

[
R(x,λ)
R1(x,λ)

]
= eϵ = eO(1)/λ

=⇒ R(x, λ)

R1(x, λ)
= 1 +

O(1)

λ

=⇒ R(x, λ) = R(a, λ) +R(a, λ) · O(1)

λ

=⇒ R(x, λ) = R(a, λ) +
O(1)

λ
.

Hence, we deduce equation (73). This completes the proof.

The key takeaway from Theorem(3.4.1) mentioned above is that, intuitively, for large
enough λ, the modified Phase variable function ϕ(x, λ) approximately behaves as a linear
function of

√
λ and the modified Amplitutde variable function R(x, λ) approximately

behaves as a constant.

3.5 Distribution of eigenvalues

Both in the current Section(3.5) and in the next section, we will treat in detail, the
regular SL systems satisfying separated endpoint condition (39) so that α′β′ ̸= 0. Before
straight-away presenting the context, let us review some examples.

Examples. Here are some examples concerning the trigonometric DE u′′ + λu = 0 in
an interval [a, b].

1. The trigonometric DE in an interval [a, b] along with the boundary condition u(a) =
u(b) = 0 has its nth eigenfunction un(x) = sin[nπ(x− a)/(b− a)], corresponding to
its nth eigenvalue λn = n2π2/(b− a)2, for n running over N.

2. Again for the same mentioned DE, but with endpoint condition u(a) = u′(b) = 0,
we get un(x) = sin

√
λn(x − a), where λn = (n + 1

2
)2π2/(b − a)2, such that n runs

over N.

3. Also, when u′(a) = u′(b) = 0, we get its (n+1)th eigenfunction as un+1(x) =
cos

√
λn(x− a), where λn = n2π2/(b− a)2, for n running over N0.

In this section, we shall see that the cases of the trigonometric DE is just typical, and
hence shall present result showing that the asymptotic distribution of eigenvalues of
all regular SL systems is the same. In particular, we will treat in detail the case of
separated endpoint conditions (39), further assuming α′β′ ̸= 0. We can safely consider,
for our convenience, the given SL system reduced in its Liouville normal form (66)-(67),
as anyways this does not change the eigenvalues or the condition α′β′ ̸= 0.
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Our aim would be to show that
√
λn = [nπ/(b − a)] + O(1)/(n) for n = 0, 1, 2, · · · .

Basically, unless α′ = β′ = 0 in (67), the asymptotic behavior of the eigenvalues and
eigenfunctions is similar to that of u′′ + λu = 0, with the endpoint conditions α = β = 0.

Let A = α/α′ and B = −β/β′. By the assumption α′β′ ̸= 0, we know A and B to be
finite. We choose ϕ(x, λ), a solution of (66) satisfying the initial condtition

cotϕ(a, λ) =
A√

λ− q(a)
, 0 ≤ ϕ(a, λ) < π. (74)

According to (68), the non-trivial solution u(x) corresponding to ϕ(x, λ) will be an eigen-
function iff

cotϕ(b, λ) =
B√

λ− q(b)
, ϕ(b, λ) = δ + nπ, δ ∈ (0, π]. (75)

By using the expansion of arccotx, around x = 0, we simplify relation (74). For λ→ ∞,
we have

ϕ(a, λ) =
π

2
− A√

λ
+

O(1)

λ3/2
. (76)

By virtue of Theorem(3.2.1), we can mark the above conclusion as, for large value of
n ∈ N0, we have

ϕ(a, λn) =
π

2
− A√

λn
+

O(1)

λ
3/2
n

. (77)

Similarly, we simply condition (75), to get that that for large value of n ∈ N0,

ϕ(b, λn) = nπ +
π

2
− B√

λn
+

O(1)

λ
3/2
n

. (78)

Also note that, directly invoking equation (72), we get that for large value of n ∈ N0,

ϕ(x, λn) =
π

2
+
√
λn(x− a) +

O(1)√
λn

=⇒ ϕ(b, λn) = ϕ(a, λn) +
√
λn(b− a) +

O(1)√
λn

=⇒ ϕ(b, λn)− ϕ(a, λn) =
√
λn(b− a) +

O(1)√
λn
. (79)

We finally combining equations (77), (78) and (79) we get that for large value of n ∈ N0,

ϕ(b, λn)− ϕ(a, λn) = nπ +
O(1)√
λn

=
√
λn(b− a) +

O(1)√
λn
. (80)

For n→ ∞ as λn → ∞, we obtain limn→∞ nπ/
√
λn = (b− a), or

√
λn = Knn, such that

Kn goes to π/(b− a). Substituting these in equation (80), we obtain

√
λn =

nπ

b− a
+

O(1)√
λn

=
nπ

b− a
+

O(1)

n
.
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Hence, we present all these manipulative calculations above in the form of the following
theorem and its corollary.

Theorem 3.5.1. For the regular SL system (66)-(67), let α′β′ ̸= 0. Then the eigenvalues
λn are given, as n→ ∞, by the following asymptotic formula√

λn =
nπ

b− a
+

O(1)

n
.

Here, O(1) denotes a function uniformly bounded for all integers n ≥ 0.

Corollary 3.5.2. If {λn} is the sequence of nonzero eigenvalues of a regular SL system,
then Σ∞

n=0λ
−2 <∞.

3.6 Normalised eigenfunctions

Definition 3.6.1. Normalized square-integrable functions A square-integrable func-
tion u on an interval (a, b) is normalized relative to a weight function ρ when∫ b

a

u2(x)ρ(x)dx = 1.

Note that, in the case of the eigenfunctions of (66), ρ(x) ≡ 1. For this section, our aim
is to show that the normalized eigenfunctions of (66) and (67) behave approximately like
cosine functions, with the additional constraint α′β′ ̸= 0.

Due to the first relation in (68), for an eigenfunction un(x), with eigenvalue λn, we have

un(x) =
R(x, λn)

4
√
λn − q(x)

sinϕ(x, λn), a ≤ x ≤ b. (81)

For λ→ ∞, we use (72), to get

dϕ

dx
=

√
λ+

O(1)√
λ

dx

dϕ
=

1
√
λ(1 + O(1)

λ
)

=
1√
λ
·

∞∑
k=0

(−1)k
(O(1)

λ

)k
[using convergence of geometric series]

=
1√
λ

(
1− O(1)

λ

)
=

1√
λ
+

O(1)

λ3/2
. [using property of O(1)]

∴
dx

dϕ
=

1√
λ
+

O(1)

λ3/2
. (82)
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We know consider the following integral for λ→ ∞,∫ b

a

sin2 ϕ(x, λ)dx =

∫ ϕ(b,λ)

ϕ(a,λ)

sin2 ϕ
dx

dϕ
dϕ

= (λ−1/2 +O(1)λ−3/2)

∫ ϕ(b,λ)

ϕ(a,λ)

sin2 dϕ [using (82)]

= (λ−1/2 +O(1)λ−3/2)
[ϕ
2
− sin 2ϕ

4

]ϕ(b,λ)
ϕ(a,λ)

= (λ−1/2 +O(1)λ−3/2) ·
[λ1/2(b− a)

2
+O(1)

]
[using (80)]

=
(b− a)

2
+

O(1)

λ1/2
.

We must present the above calculations in the form of the following lemma so that we
can use it later.

Lemma 3.6.1. Let ϕ(x, λ) be as in the proof of Theorem(3.5.1). Then as λ→ ∞,∫ b

a

sin2 ϕ(x, λ)dx =
(b− a)

2
+

O(1)

λ1/2
.

A second step towards our primary aim of this section is the following lemma.

Lemma 3.6.2. Let u(x, λ) be a solution of (66). Then as λ→ ∞,

(∫ b

a

u2(x)dx
)1/2

= R(a, λ) · λ−1/4 ·
√
b− a

2

(
1 +

O(1)

λ1/2

)
+

O(1)

λ5/4
.

Proof. Using the first relation in (68) and then expanding R(x, λ) as in equation (73),
we get ∫ b

a

u2(x)dx =
[
R(a, λ) +

O(1)

λ

]2 ∫ b

a

[λ− q(x)]−1/2 sin2 ϕdx.

We use property(3) of O(1) mentioned above to deduce that [λ − q]−1/2 = λ−1/2 +
O(1)λ−3/2. Further using Lemma(3.6.1) to simply the above integral, we get∫ b

a

u2(x)dx =

[
R(a, λ) +

O(1)

λ

]2 (
λ−1/2 +O(1)λ−3/2

)(b− a

2
+O(1)λ−1/2

)
=

[
R(a, λ) +

O(1)

λ

]2(
b− a

2λ1/2
+

O(1)

λ

)
(∫ b

a

u2(x)dx

)1/2

=

(
R(a, λ) +

O(1)

λ

)(
b− a

2λ1/2
+

O(1)

λ

)1/2

=
R(a, λ)

λ1/4

√
b− a

2

(
1 +

O(1)

λ1/2

)
+

O(1)

λ5/4
.

This completes the proof.
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Corollary 3.6.3. If, in Lemma(3.6.2),
∫ b

a
u2(x, λ)dx = 1, then

R(a, λ) =

√
2

b− a
λ1/4

[
1 +O(1)λ−1/2

]
.

Proof. From Lemma(3.6.2), for normalized solutions, we get :

1− O(1)

λ5/4
=
R(a, λ)

λ1/4
·
√
b− a

2

(
1 +

O(1)

λ1/2

)
.

Here, by solving for using appropriate property of O(1), we get the relation we wanted
to deduce. This completes the proof.

Lemma 3.6.4. Let λn be the nth eigenvalue of the SL system (66)-(67). Then, as n→ ∞
we have the following unless α′β′ = 0,

sinϕ (x, λn) = cos
nπ(x− a)

b− a
+O(1)λ−1/2

n .

Proof. By Theorem(3.4.1), (72) we have

ϕ(x, λn) = ϕ(a, λn) +
√
λn(x− a) +

O(1)√
λn
.

Moreover from (77), we borrow ϕ(a, λn) = π/2 + O(1)/
√
λn. Thus, substituting this in

the previous formula and using the identity sin(A + O(1)/xn) = sinA + O(1)/xn, for
positive n, we get :

sinϕ (x, λn) = sin
[√

λn(x− a) + π/2
]
+O(1)/

√
λn

sinϕ (x, λn) = cos
[√

λn(x− a)
]
+O(1)/

√
λn. (83)

We now apply Theorem(3.5.1), from the previous section on the argument
√
λn(x − a).

Also, we borrow O(1)/n = O(1)/
√
λn from the last section to get

cos
[√

λn(x− a)
]
− cos

[
nπ(x− a)

(b− a)

]
= O(1)n−1 = O(1)λ−1/2

n

Substituting this appropriately in (83), we get what we needed.

sinϕ (x, λn) = cos
nπ(x− a)

b− a
+O(1)λ−1/2

n . (84)

This completes the proof.

Now let us focus back on the relation (81). 1/ 4
√
λn − q(x) can be replaced by the ap-

proximation (λ− q)−1/4 = λ−1/4 +O(1)λ−5/4. The factor R(x, λn) is again approximated
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by Corollary(3.6.3), and lastly sinϕ(x, λ) is estimated due to Lemma(3.6.4). Thus, these
substitutions allows us to obtain

un(x) =

√
2

b− a
cos

[
nπ(x− a)

b− a

]
+O(1)λ−1/2

n .

As λ−1/2 = O(1)n−1, we complete the proof and hence, present the theorem which imples
the primary aim of this section.

Theorem 3.6.5. Let {un}, for n running over N0, be the sequence of normalised eigen-
functions of the regular SL system (66)-(67), with α′β′ ̸= 0. Then

un(x) =

√
2

b− a
cos

[
nπ(x− a)

b− a

]
+

O(1)

n
. (85)

Change in notation. Please note that, from the upcoming section, the symbol ϕ will
no longer be used to denote the usual Phase variable function in context of Prüfer or
Modified Prüfer substitution. The entity which it will denote will be mentioned appro-
priately.

3.7 Orthogonal expansions

Let us assume ϕ1(x), ϕ2(x), ϕ3(x), · · · to be any bounded, square-integrable functions
on an interval Ĩ : a < x < b, orthogonal with respect to a positive weight function ρ(x),
so that ∫

Ĩ

ϕh(x)ϕk(x)ρ(x)dx = 0, if h ̸= k.

Suppose that a given function f(x) can be expressed as the limit of a uniformly convergent
series of multiples of the functions ϕk(x), so that we have

f(x) = c1ϕ1(x) + c2ϕ2(x) + c3ϕ3(x) + · · · =
∞∑
h=1

chϕh(x) (86)

As the assumption of uniform convergence allows us to have term-by-term integration of
an infinite series, we multiply both sides of (86) by ϕk(x)ρ(x), and then integrate term-
by-term over the interval. By virtue of the above mentioned orthogonality relation, we
get the following equation∫

Ĩ

f(x)ϕk(x)ρ(x)dx =
∞∑
h=1

∫
Ĩ

chϕh(x)ϕk(x)ρ(x)dx = ck

∫
Ĩ

ϕ2
k(x)ρ(x)dx

Hence, the coefficients ch in (86) must satisfy and can be computed thorugh, the following
relation

ch =

{∫
Ĩ

f(x)ϕh(x)ρ(x)dx

}/{∫
Ĩ

ϕ2
h(x)ρ(x)dx

}
. (87)
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Here, one can observe the similarity of the above deduction with the one done in Chap-
ter(1) for deducing the Fourier coefficients. In fact, when ϕk(x) are the trigonometric
sinusoid functions, we precisely obtain, as a special case, the coefficients of the Fourier
series with ρ(x) = 1. Now, we can summarize the above discussion as the following result.

Theorem 3.7.1. If a function f(x) is the limit f(x) = Σckϕk(x) of a uniformly con-
vergent series of constant multiples of bounded square-integrable functions ϕk(x) that are
orthogonal with respect to a weight function ρ(x), the coefficients ch of the series are given
by

ch =

∫
Ĩ
f(x)ϕh(x)ρ(x)dx∫
Ĩ
ϕ2
h(x)ρ(x)dx

.

Note that, the preceding conclusion, i.e., Theorem(3.7.1) holds provided that one can
integrate the series Σchϕh(x)ϕk(x)ρ(x) term-by-term on the interval Ĩ. Well, this holds
much more generally than for uniform convergence, for example, for mean-square conver-
gence, which we will discuss in the upcoming Section(3.5).

3.8 Mean-square approximation : L2
ρ - convergence

Till now, we have put only uniformly convergent series under our consideration, since
these allows us to perform term-by-term integration. The notion of convergence most
appropriate for orthogonal expansions is, however, not uniform convergence but mean-
square convergence, which we define as follows.

Definition 3.8.1. Let f and the terms of the sequence {fn}n∈N be square-integrable real
functions. The sequence {fn} is said to converge to f in the mean square on the interval
Ĩ, with respect to the positive weight function ρ(x), when∫

Ĩ

[fn(x)− f(x)]2ρ(x)dx→ 0, as n→ ∞. (88)

Now, suppose that ϕ1, ϕ2, ϕ3, · · · form an infinite sequence of square-integrable functions
on the interval Ĩ, orthogonal with respect to the weight function ρ(x), and let fn(x) =
γ1ϕ1(x)+ · · ·+ γnϕn(x) to be the nth partial sum of the series Σ∞

k=1γkϕk(x). To make the
partial sums fn, converge in the mean-square to f as rapidly as possible, we choose the
coefficients γn, so as to minimize the following expression :

E = E (γ1, . . . , γn) =

∫
Ĩ

[
f(x)−

n∑
k=1

γkϕk(x)

]2
ρ(x)dx. (89)

We now expand (89) and use the orthogonality relation mentioned above, we get the
following expression for the function E in variables γ1, γ2, · · · , γn

E =

∫
Ĩ

f 2ρ dx− 2
n∑

k=1

γk

∫
Ĩ

fϕkρ dx+
n∑

k=1

γ2k

∫
Ĩ

ϕk
2ρ dx.

We purposefully consider the numbers γ1, γ2, · · · , γn so that they minimize E. As E is
differentiable in each of its variables, the minimum of E can be attained only by setting
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every ∂E/∂y = 0. Basically, a necessary condition for a minimum is that the γk satisfy
the following equation

−2

∫
Ĩ

fϕkρdx+ 2γk

∫
Ĩ

ϕ2
kρ dx = 0

γk =

∫
Ĩ
f(x)ϕk(x)ρ(x) dx∫
Ĩ
ϕ2
k(x)ρ(x) dx

.

It is worth noticing that, the expression for the γk minimizing the mean-square error
E is same as the coefficients ck in (87). Therefore, the choice γk = ck as in (87) does
indeed give a minimum for E. A simple calculation, completing the square, gives us the
expression of E as follows.

E =

∫
Ĩ

[
f −

∑
γkϕk

]2
ρ dx

=

∫
Ĩ

f 2ρ dx+
n∑

k=1

[
−c2k + (γk − ck)

2] ∫
Ĩ

ϕ2
kρ dx.

Here, in the above expression it is evident that the minimum of E is attained iff γk = ck.
These discussion completes the proof and enables us to present following result, for any
interval Ĩ.

Theorem 3.8.2. Let {ϕk(x)} be a sequence of orthogonal square-integrable functions,
and let f be square-integrable. Then, among all possible choices of γ1, γ2, · · · , γn the
integral in (89) is minimised by selecting γk = ck, where ck is defined as

ck =

∫
Ĩ
f(x)ϕk(x)ρ(x) dx∫
Ĩ
ϕ2
k(x)ρ(x) dx

.

The partial sum c1ϕ1 + · · · + cnϕn in Theorem(3.7.1) is therefore, the best mean-square
approximation to f(x) among all possible sums γ1ϕ1 + · · · + γnϕn, and it is often called
the least square approximation to f(x) because it minimizes the mean square difference
E in (89).

3.8.1 Orthonormal functions

The preceding formulas like (87) become much simpler if the orthogonal functions ϕk are
orthonormal, that is apart from being orthogonal they also satisfy

∫
Ĩ
ϕ2
kρ(x) dx = 1. We

can easily construct, from any sequence {ϕk} of orthogonal functions, an orthonormal

sequence {ψk}, by setting ψk = ϕk

/√∫
Ĩ
ϕ2
kρ(x) dx. Note that, through all the above

expressions E is non-negative, so by substituting the relation
∫
Ĩ
ϕ2
kρ(x) dx = 1, we get

the following result.

Corollary 3.8.3. Let Σn
1ckϕk be the least-square approximation to f by a linear combi-

nation of orthonormal functions ϕk. Then

n∑
k=1

c2k ≤
∫
Ĩ

f 2(x)ρ(x)dx. (90)
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For the right-hand-side member of (90) to be finite, it is necessary that the function
f 2(x)ρ(x) be integrable, that is, that f be square-integrable with respect to the weight
function ρ(x). When this is the case, then due to Chauchy-Schwartz Inequality, the inte-
grals in (87) are also well-defined. As the right-hand-side member of (90) is independent
of n, we can let n tend to ∞, which will give us

∞∑
k=1

c2k ≤
∫
I

f 2(x)ρ(x)dx < +∞. (91)

The inequality (91) is a celebrated result in mathematical analysis in general, and is
popularly called as the Bessel’s Inequality.

3.8.2 Completeness

Now let us proceed ahead in the direction which matters to us the most in the current
context. The most important question about a sequence of continuous functions ϕk

(k = 1, 2, 3, · · · ), orthogonal and square-integrable with respect to a weight function ρ(x),
is : Can every square-integrable function f be expanded into an infinite series f = Σ∞

1 ckϕk

of ϕk? When this is possible for every continuous f , the sequence of orthogonal functions
ϕk is said to be complete.†
Using the fundamental form of the error in mean-square approximation, mentioned above,
we can reformulate the definition of completeness as follows. In order to the following to
happen

lim
n→∞

∫
Ĩ

[
f(x)−

n∑
k=1

γkϕk

]2
ρ(x)dx = 0,

it is necessary and sufficient that we have

lim
n→∞

{[∫
Ĩ

f 2ρdx−
n∑

k=1

c2k

∫
Ĩ

ϕ2
kρdx

]
+

n∑
k=1

(γk − ck)
2

∫
Ĩ

ϕ2
kρdx

}
= 0.

By Bessel’s Inequality (91), we know that the term in square-braces in the above expres-
sion is non-negative. Also, since

∫
ϕ2
kρ dx > 0 for any non-trivial ϕk, the limit is zero

iff γk = ck ∀k, and equality holds in Bessel’s inequality (91). This proves the following
result.

We present Theorem(3.8.4) and using the definition of orthonormal functions, its Corol-
lary(3.8.6) as follows.

† Note that, Here and below, the equation f = Σ∞
1 ckϕk is to be interpreted in the sense of

mean-square convergence, that is, the partial sums Σ∞
1 ckϕk converge in the mean square

to the function f with respect to ρ. Further, if every continuous function can be expanded
into a series Σ∞

1 ckϕk, then many discontinuous functions also have such an expansion,
convergent in the mean square. The class of all such functions is that of all Lebesgue
square-integrable functions.
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Theorem 3.8.4. A sequence {ϕk} for functions ϕk(x), orthogonal and square-integrable
with positive weight function ρ(x) on an interval Ĩ, is complete iff for all continuous
square-integrable functions f , we have∫

Ĩ

f 2(x)ρ(x)dx =
∞∑
k=1

{[∫
Ĩ

f(x)ϕk(x)ρ(x)dx

]2/∫
Ĩ

ϕ2
k(x)ρ(x)dx

}
.

Corollary 3.8.6. If the functions ϕk(x) are orthonormal, then a necessary and sufficient
condition for completeness is, that for all continuous square-integrable functions f , the
following Parseval’s Identity holds, i.e.,∫

Ĩ

f 2(x)ρ(x)dx =
∞∑
k=1

[∫
Ĩ

f(x)ϕk(x)ρ(x)dx

]2
.

Observe that by simply using the above Corollary(3.8.6), one can deduce the completeness
of {1, cos kx, sin kx | k running over N} (i.e. L2 convergence of Fourier series). In
Chapter(1), we have seen the validity of the Parseval’s Identity for a Fourier series.

We can now conclude this section with the following theorem, which provides a crite-
rion for completeness of a sequence of orthogonal functions, which relates the notion of
completeness to that of approximation in the sense of mean-square convergence or L2

ρ-
convergence. Note that for the following theorem, one direction of its proof follows clearly
from the discussions done in this section, while the other direction is trivial.

Theorem 3.8.7. Let {ϕk}k∈N be any sequence of orthogonal square-integrable functions
on an interval Ĩ, relative to a weight function ρ(x) > 0. The sequence is complete iff
every continuous square-integrable function can be approximated arbitrarily closely in the
mean square by a linear combination of the ϕks.

3.9 Completness of eigenfunctions - I

We, finally intend to present the completeness of the eigenfunctions of a regular Sturm-
Liouville system in this section, which we will see, to be a consequence of the asymptotic
formulas discussed throughout Section(3.5) and Section(3.6). Further, the completeness
also depends on a geometric property of sets of orthonormal vectors in Euclidean vector
space[2]. This property is stated in the following crucial theorem, often credited to N.
Bary.

Theorem 3.9.1. Let {ϕn} be any complete sequence of orthonormal vectors in a Eu-
clidean vector space E, and let {ψn} be any sequence of orthonormal vectors in E, such
that it satisfies the inequality

∞∑
n=1

∥ψn − ϕn∥2 < +∞.

Then the vectors ψn are complete in E.
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While the proof for Theorem(3.9.1) is crucial for accepting of its validity, but due to
limitations in focus, the detailed exposition of its proof will be skipped here. The proof,
however, is readily available in the literature [2], and its validity has been verified in
various contexts. Although, intuitively it is clear, since it asserts that completeness is
preserved in passing from a set of orthonormal vectors ϕn to any nearby system.

Assuming Theorem(3.9.1), we will try to establish the completeness of the eigenfunctions
of a regular SL system.

Proposition 3.9.2. The functions cos[kπ(x − a)/(b − a)], for k = 0, 1, 2, . . ., form a
complete orthogonal sequence in L2[a, b].

Proof. Note that, as {1, cos kx, sin kx | k running over N} is complete in L2[a, b], through
changing variables we can similarly establish the validity of Parseval’s equality for func-
tions cos[kπ(x − a)/(b − a)], for k running over N0. Hence, we get what we wanted to
proof.

From Theorem(3.6.5) stated in Section(3.6), we consider the asymptotic formula (85),

un(x) =

√
2

b− a
cos

[
nπ(x− a)

b− a

]
+

O(1)

n
.

If un(x) is the nth normalized eigenfunction of a regular SL system in Liouville normal
form, and if ϕn(x) =

√
2/(b− a) cos[(nπ(x−a))/(b−a)], then we have |un(x)−ϕn(x)| =

O(1)/n. It follows that,

∥un − ϕn∥2 =
∫
Ĩ

[un(x)− ϕn(x)]
2 dx =

O(1)

n2
.

As the infinite series 1 + 1
4
+ 1

9
+ · · · + 1

n2 + · · · converges (to π2/6), we can present the
following lemma out of this discussion.

Lemma 3.9.3. Let un(x) be the nth normalized eigenfunction of any regular SL system
in Lioville normal form, along with the constraint α′β′ ̸= 0, and let

un(x) =

√
2

b− a
cos

[
nπ(x− a)

b− a

]
.

Then the ϕn are an orthogonal sequence, and also

∞∑
n=1

∥un − ϕn∥2 < +∞.

Now from a combined application of Proposition(3.9.2), Lemma(3.9.3) and Bary’s Theo-
rem(3.9.1), it follows that the eigenfunctions of any regular SL system in Liouville normal
form with constraint α′β′ ̸= 0 are a complete set of orthonormal functions in the appro-
priate L2 space.

As shown in Section(3.3), when applied to normalized eigenfunctions, the transformation
to Liouville normal form carries the inner product < ϕ, ψ >=

∫
Ĩ
ϕ(x)ψ(x)ρ(x) dx into
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the inner product < u, v >=
∫ c

0
u(x)v(x) dx. Therefore, the change of variable that leads

to a Liouville normal form carries complete orthonormal sequences (relative to weight
function ρ(x)) again to complete orthonormal sequences. Therefore, we can conclude
that, the eigenfunctions of regular SL systems, which are not in Liouville normal form
are also complete. As very similar arguments cover the case with constraints α′β′ = 0, our
goal in the larger persepective is hence established in the form of the following theorem.

Theorem 3.9.4. The eigenfunctions of any regular SL system are complete in the space
of all square-integrable functions, on the interval [a, b], relative to the weight function
ρ(x).

3.10 Completness of eigenfunctions - II

It is time, that we shall see the completeness of eigenfunctions of some of the singular
SL systems we have previously seen in Section(2.3). Particularly, we will consider SL
systems on a finite interval whose eigenfunctions are polynomials, such as the Legendre
polynomials. We can use any positive weight function ρ(x) on an interval (a, b) such that

the integral
∫ b

a
xnρ(x)dx is convergent for all n ≥ 0. The plan is to construct an infinite

sequence of polynomials P0(x), P1(x), · · · , with Pn(x) of degree n, which are orthogonal
on (a, b) with respect to this weight function, so that we have∫ b

a

Pm(x)Pn(x)ρ(x)dx = 0, m ̸= n. (92)

Equation(92) define Pn(x) uniquely up to an arbitrary factor of proportionality, the nor-
malisation constant. Given a weight function, the polynomials Pn(x) can be computed
explicity using the equation (92). We will not discuss the computation here dagger, in-
stead we will derive some interesting general properties of orthogonal polynomials. As
mentioned above, the primary aim is to establish the completeness of such sequences
of orthogonal polynomials on any finite interval. In order to do this, we will need the
following Lemma.

Lemma 3.10.1. Every uniformly convergent sequence of continuous functions is mean-
square convergent on any interval Ĩ, with respect to any integrable positive weight function
ρ, i.e.,

∫
Ĩ
ρ(x)dx < +∞.

This follows immediately from the following inequality,∫
Ĩ

[fn(x)− f(x)]2ρ(x)dx ≤ max
[
[fn(x)− f(x)]2

] ∫
Ĩ

ρ(x)dx, (93)

which is valid whenever Ĩ is any finite interval. Using Lemma(3.10.1), it is easy to prove
the completeness of a sequence of orthogonal polynomials defined on a finite interval J ,
relative to any continuous integrable weight function ρ(x) from the fundamental result,
Weierstrass Approximation Theorem[13],[1].

† In principle, it is the Gram-Schimdt orthogonalization process applied to the vectors
1, x, x2, · · · . This process can be applied in any Euclidean vector space.

65



Theorem 3.10.2. Weierstrass Approximation Theorem. Let f(x) be any function
continuous on a finite closed interval a ≤ x ≤ b, and let ϵ > 0 be any positive number.
Then there exists a polynomial p(x), such that |p(x)|f(x)| ≤ ϵ, for all x ∈ [a, b].

From Theorem(3.10.2) and the inequality (93), we infer the following

Theorem 3.10.3. Let Pn(x), for n = 0, 1, 2, 3, · · · , be a polynomial function of degree n.
For a fixed interval [a, b], let∫ b

a

Pm(x)Pn(x)ρ(x) dx = 0, m ̸= n,

where ρ(x) is a continuous integrable positive weight function. Then the orthogonal poly-
nomials Pn(x) are complete on L2

ρ(x)[a, b].

Proof. Let us start with the assumption that, p(x) be a n degree polynomial. We can
always find a constant cn such that p(x) − cnPn(x) is an n − 1 degree polynomial.
Thus, due to induction on n, we can express p(x) as a finite linear combination of
P0(x), P1(x), · · · , Pn(x). By the Weierstrass Approximation Theorem(3.10.2), we can ap-
proximate uniformly any continuous function arbitrarily closely by a suitable polynomial
p(x).

Using Lemma(3.10.1), we get that every continuous function can be approximated arbi-
trarily closely in the mean square by a linear combination of the Pk. Therefore, Theo-
rem(3.8.7), we get what we wanted to establish. This completes the proof.

The completeness of orthogonal polynomials, whose corresponding SL system are defined
over a finite interval like Legendre polynomials or Chebyshev polynomials follows as a
corollary, but in general, it is difficult to establish the completeness of orthogonal poly-
nomials like the Hermite polynomials or the Laguerre polynomials, whose corresponding
SL systems are defined over intervals which are not finite.
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CHAPTER 4: DISCRETE APPROXIMATION OF

CHEBYSHEV COEFFICIENTS : PSEUDOSPECTRAL

METHODS

4.1 Introduction

In theoretical analysis, it is a classic problem to find a proper basis of function classes
and decompose functions from that class to write it in terms of the basis elements. We
have seen the concerned methodologies and proceedings during Chapter(1). In numerical
analysis, the primary motivation to represent functions as a series of other elementary
functions like sinusoids or polynomials, was to facilitate solving differential equations
efficiently. As described in [5], the basic idea is to assume that the unknown function
u(x) can be approximated by a sum of N + 1 “basis functions” ϕn(x):

u(x) ≈ uN(x) =
N∑

n=0

anϕn(x)

When this series is substituted into the differential equation Lu = f(x), where L is the
operator of the differential, the result is the so-called residual function defined by:

R(x; a0, a1, · · · , aN) = LuN − f

Since in the ideal scenario, that is, for the exact solution, the residual function

R(x; a0, a1, · · · , aN)

is zero, the challenge is to compute the series coefficients {an} so that the residual func-
tion admits a minimized value. Hereby, we dive into the realm of spectral methods. Other
popular methods like finite element methods are similar in philosophy to spectral algo-
rithms but the major difference is that finite elements chop the interval in x into a number
of sub-intervals, and then choose the ϕn(x) to be local functions, which are polynomials
of fixed degree which are non-zero only over a couple of sub-intervals. In contrast, spec-
tral methods use global basis functions, in which ϕn(x) is a polynomial (or trigonometric
polynomial) of high degree which is non-zero, except at isolated points, over the entire
computational domain. The main disadvantage of finite element methods is low accuracy
(for a given number of degrees of freedom N ) because each basis function is a polyno-
mial of low degree. In spectral methods, the high order of the basis functions give high
accuracy for a given N , further spectral methods are also memory-minimizing.

Although we have seen many types of basis functions, the best choice for 95% of all
applications is an ordinary Fourier series or a Fourier series in disguise. By “disguise”
we mean a change of variable which turns the sines and cosines of a Fourier series into
different functions. The most important disguise is the one worn by the Chebyshev
polynomials, which have the property :

Tn(cos θ) ≡ cosnθ. (94)
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Due to this favorable property, Chebyshev polynomials are therefore of high interest
as an alternative to the monomial basis for representing polynomials and polynomial
expansions. This in a way forwards the motivation to compute Chebyshev coefficients in
a faster manner, without compromising accuracy. In methodologies implemented during
the numerical experiment on Fourier series approximation we had considered the formula
involving the appropriate inner product to compute the SL series coefficients, which
was a continuous case approximation. Unlike that, here we will explore about discrete
approximation of SL series coefficients, in particular Chebyshev coefficients.

4.1.1 Examples of Orthogonal polynomials

1. Legendre’s Equation : (1 − x2)u′′ − 2xu′ + λu = 0 for x ∈ (−1, 1). Here, the
eigenvalues are of the form λ = n(n+1) for each n ∈ N0 and the eigenfunctions are
polynomials called Legendre’s Polynomials. The weight function here is 1, and the
eigenfunctions are orthogonal in L2(−1, 1).

Named after the French mathematician Adrien-Marie Legendre (1752-1833).

2. Hermite’s Equation : u′′ − 2xu′ + λu = 0 for x ∈ R. Here, the eigenvalues are of
the form λ = 2n for each n ∈ N0 and the eigenfunctions are polynomials called
Hermite’s Polynomials. The weight function here is e−x2

, and the eigenfunctions
are orthogonal in L2

e−x2
(R).

Named after the French mathematician Charles Hermite (1822-1901).

3. Laguerre’s Equation : xu′′−(1−x)u′+λu = 0 for x ∈ (0,∞). Here, the eigenvalues
are of the form λ = n for each n ∈ N0 and the eigenfunctions are polynomials called
Laguerre’s Polynomials. The weight function here is e−x, and the eigenfunctions
are orthogonal in L2

e−x(0,∞).

Named after the French mathematician Edmond Laguerre (1834-1886).

4. Chebyshev’s Equation : (1 − x2)u′′ − xu′ + λu = 0 for x ∈ (−1, 1). Here, the
eigenvalues are of the form λ = n2 for each n ∈ N0 and the eigenfunctions are
polynomials called Chebyshev’s Polynomials. The weight function here is (1 −
x2)−1/2, and the eigenfunctions are orthogonal in L2

(1−x2)−1/2(−1, 1).

Named after the Russian mathematician Pafnuty Chebyshev (1821-1894).

For more detailed theory and numerical knowledge concerning orthogonal polynomials,
[2], [15], [9], [25] are some popularly preferred sources. The Chebyshev and Legendre
polynomials belong to the family of ‘Gegenbauer polynomials’. Out of the four options
mentioned above, we will particularly explore the fourth one, namely, Chebyshev poly-
nomials.
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4.2 Discrete form of Chebyshev coefficients

Spectral methods fall into two broad categories, namely, the interpolating and non-
interpolating methods. The interpolating or pseudospectral methods associate a grid
of points with each basis set. The coefficients of a given function f(x) are calculated
by requiring that the truncated series expansion agrees with f(x) at each point of the
grid. Similarly, the coefficients of a non-interpolating or pseudospectral approximation
to the solution of a differential equation are found by requiring that the residual function
interpolate f = 0 so that

R(xi; a0, a1, · · · , aN), i = 0, 1, 2, · · · , N.

4.2.1 Motivation

Continuing the discussion initiated in the last paragraph, we know that in simple words,
the pseudospectral method demands that the differential equation to be solved be exactly
satisfied at a set of points known as the collocation or interpolation points. Presumably for
certain class of algorithms, where the residual function is made to vanish at an increasingly
large number of discrete points, it will be smaller and smaller in the gaps between the
collocation points so that R ≈ x everywhere in the domain, and therefore uN(x) will
converge to u(x) as N increases. Methods falling under the hood of this clan of algorithms
are also called orthogonal collocation or method of selected points.

The non-interpolating clan of algorithms includes Galerkin’s method[5] and the Lanczos
Tau-method[5]. They do not use any grid of interpolation points. Instead, the coef-
ficients of a given function f(x) are computed by multiplying f(x) by a given basis
function and then integrating (somewhat philosophically similar to the methodologies
we had implemented during the Fourier series experiment). It is indeed very enticing
to report the difference between these two algorithmic clans as “integration-type” versus
“interpolation-type”, but it would be very naive in reality. Several classical books on
approximation theory have shown how one can use the properties of the basis functions
(recurrence relations, trigonometric identities, etc.) to compute coefficients without ex-
plicitly performing any integrations. Even though the end product is identically the same
as that obtained by integration, it is a bit little confusing to label a calculation as an
“integration-type” spectral method when there is not even a single integral sign in sight.
Therefore, we shall use the benign label of “non-interpolating”. [5] in its later chapters
shows that the accuracy of pseudospectral methods is only a little bit poorer than that
of the non-interpolating kingdom, to the extent that practically they are too little to
outweigh the much greater simplicity and computational efficiency of the pseudospectral
algorithms [as evidence Table(1)].

Consequently, we shall emphasize interpolating methods or pseudospectral methods in
the sections following. Due to the working principle of pseudospectral algorithms we get
to compute the so-called discrete form of the coefficients involved while doing an SL series
approximation using Chebyshev polynomials. We will call these coefficients Chebyshev
coefficients. Here-on, a Chebyshev polynomial of degree n will be denoted as Tn(x).

70



Gaussian Integration vs. Pseudospectral Grid

f(x) Error in continuous case Error in discrete case parameter n

signum(x) 9.9469e-03 1.0777e-02 n = 128
|x| 1.9764e-07 4.1633e-07 n = 2
x 2.9506e-26 3.1465e-32 n = 2
x2 1.6725e-26 3.5160e-32 n = 4

cosx 1.7464e-23 9.5802e-31 n = 16
sinx 9.4316e-23 1.1464e-30 n = 16

Table 1: L2
ρ(x)-error in approximations by continuous-case (Gaussian Integration) coeffi-

cients & discrete-case (Pseudospectral Chebyshev) coefficients

4.2.2 Calculations & computations

In order to get a detailed understanding of the contents of this subsection, it is of impor-
tance that one has a proper knowledge of numerical methods like polynomial interpolation,
trigonometric interpolation and Gaussian integration. [7] is a good source of the purpose.
Neveretheless, we will go through important definitions and results whenever they ap-
pear to be unavoidable. In the rest of this section, we will discuss about the choice of
interpolation points and methods for computing the interpolant. A note on terminology:
we shall use “collocation points” and “interpolation points” interchangeably.

Definition 4.2.1. Interpolation An ‘interpolating’ approximation to a function f(x)
is an expression PN−1(x), usually an ordinary or trigonometric polynomial, whose N
degrees of freedom are determined by the requirement that the ‘interpolant’ agree with
f(x) at each of a set of N interpolation points :

PN−1(xi) = f(xi), i = 1, 2, 3, · · · , N.

Definition (4.2.1) above says that we can retrieve a function (or approximate it in a
domain) using its values at discrete points inside the concerned domain.

Definition 4.2.2. Lagrange Interpolation Formula In theory, we can fit values of
an unknown function at N + 1 points by using a polynomial of degree N as :

PN(x) ≈
N∑
i=0

f(xi)Ci(x)

where Ci(x) are polynomials of degree N , called the ‘Cardinal functions’ and are defined
as :

Ci(x) =
N∏

j=0,j ̸=i

x− xj
xi − xj

.
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The cardinal function representation given above is not efficient for computation, al-
though it gives a proof-by-construction of the theorem which says that it is possible to fit
an interpolating polynomial of any degree to retrieve any function. Although the interpo-
lating points are often evenly spaced or uniformly spaced (surely this is the most obvious
possibility), but no such restriction is inherent in the formula given in Definition(4.2.2);
the formula is still valid even if the {xi}s are unevenly spaced or out of numerical order.

Case-study. Note that, it seems plausible that if we distribute the interpolation points
evenly over an interval [a, b], then the error in PN(x) should tend to 0 as N → ∞ for any
given smooth function f . Interestingly at the turn of the century, Runge provided an
counterexample to show that this is not true. In his famous example, he had considered
the function f(x) = 1

1+x2 in the interval [−5, 5]. Runge established that for this function,
interpolation with evenly spaced points converges only within the interval |x| ≤ 3.63 and
diverges for larger |x|. In particular, the 15th degree polynomial does an excellent job of
representing the function for |x| ≤ 3; but as we use more and more points, the error gets
worse and worse near the endpoints.

Inferences. This numerical result reflected the fact that the situation would not be
hopeless if one is willing to consider an uneven grid of interpolation points. As a matter
of fact, Runge had proved the middle of the interval was not the problem. The big errors
were always occuring near the endpoints. This suggested that one should space the grid
points relatively far apart near the middle of the interval where we are getting high
accuracy anyway and increase the density of grid points as we approach the endpoints.

Checkpoint. From the inferences of the Runge’s counterexample, the idea to choose an
uneven interpolation grid became hopeful. But now the challenge was to answer what
distribution of points is best? The answer was discovered through a couple of classic
theorems.

Theorem 4.2.3. Cauchy Interpolation Error Theorem Let f(x) have at least
(N +1) derivatives on the interval of interest and let PN(x) be its Lagrangian interpolant
of degree N . Then

f(x)− PN(x) =
1

[N + 1]!
f (N+1)(ξ)

N∏
i=0

(x− xi)

for some ξ on the interval spanned by x and the interpolation points. The point ξ de-
pends on the function being approximated, upon N , upon x, and upon the location of the
interpolation points.

Theorem 4.2.4. Chebyshev Minimal Amplitutde Theorem Of all polynomials of
degree N with leading coefficient (coefficient of xN) equal to 1, the unique polynomial
which has the smallest maximum on [−1, 1] is TN(x)/2

N−1 , i.e., the N-th Chebyshev
polynomial divided by 2N−1. In other words, all polynomials of the same degree and
leading coefficient unity satisfy the inequality

max
x∈[−1,1]

|PN(x)| ≥ max
x∈[−1,1]

∣∣∣TN(x)
2N−1

∣∣∣ = 1

2N−1
.

Proof of both Theorem(4.2.3) and Theorem(4.2.4) can be found at [11].
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A proper understanding of ‘Cauchy Interpolation Error Theorem’(4.2.3) implies that, in
order to optimize any Lagrangian interpolation, there is nothing one can do about the
f (N+1)(ξ) factor (“in general”) as it depends on the specific function being approximated,
although the magnitude of the polynomial factor depends upon the choice of grid points.
It is evident that the coefficient of xN is 1, which is independent of the grid points, so
the question becomes: What choice of grid points gives us a polynomial (with leading
coefficient 1), which is as small as possible over the interval spanned by the grid points?
It is true that by a linear change of variable, one can always rescale and shift any interval
[a, b] to [−1, 1], but what after that? This impels us to seek help from the ‘Chebyshev
Minimum Amplitude Theorem’(4.2.4). We use the fact that any polynomial of degree N
can be factored into the product of linear factors of the form of (x− xi) where xi is one
of the roots of the polynomial, so in particular we have the following relation

1

2N
TN+1(x) =

N+1∏
i=1

(x− xi).

Thus, in order to minimize the error in the ‘Cauchy Interpolation Error Theorem’(4.2.3),
the polynomial part of the remainder should be proportional to TN+1(x). This implies
that the optimum interpolation points are the roots of the Chebyshev polynomial of degree
(N + 1). Invoking property (94), we know that Chebyshev polynomials are just cosine
functions in disguise, hence these roots are given by

xi = − cos

(
(2i+ 1)π

2N

)
, i = 0, 1, 2, · · · , N. (95)

OR

xi = − cos

(
iπ

2N

)
, i = 0, 1, 2, · · · , N. (96)

Analogous to Definition(4.2.2), if the interpolant PN(x) is of the form ΣanTn(x), then
let us call the corresponding interpolation as the Chebyshev Interpolation. Further, the
interpolation grid given by points in (95), which exclude the endpoints are called the
Chebyshev-roots grid ; whereas the grid given by points in (96), which includes the end-
points are called Chebyshev-extrema grid or the ‘Gauss-Lobatto grid’. We now borrow
the definition and concept of the discrete inner product corresponding to regular inner
product in L2[a, b] from [5], and formally state the following definition.

Note that, using the Taylor series expansion of cosine function we get that, near the
endpoint x = −1, we have the grid points

x1 ≈ −1 +
π2

8N2
, x2 ≈ −1 +

9π

8N2
[N >> 1].

Thus, these non-uniform grid points are at a spacing of O(1/N2) near the end-points,
where as the uniform grid points had a spacing of O(1/N). [Ref. Figure(13)]
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(a) 50 grid points.

(b) 100 grid points.

Figure 13: Equidistant Grid (upper-half) vs. Chebyshev Extreme Grid (lower-half) in
the interval (−1, 1).

Note. In the above Figure(13), one can visualize the increase in density of grid points
of Chebyshev Extreme Grid as compared to Equidistant Grid, near the end-points.
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(a) 150 grid points.

(b) 200 grid points.

Figure 14: Equidistant Grid (upper-half) vs. Chebyshev Extreme Grid (lower-half) in
the interval (−1, 1).

Note. In the above Figure(14), one can visualize the increase in density of grid points
of Chebyshev Extreme Grid as compared to Equidistant Grid, near the end-points.
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Definition 4.2.5. Chebyshev Interpolation If the N degree polynomial PN(x), which
interpolates to a given function f(x) at Chebyshev-extrema grid points (96) be defined as

PN(x) =
N∑

n=0

′′bnTn(x),

where the ′′ on the summation means that the first and last terms are to be taken with a
factor of 1/2, then the coefficients of the interpolating polynomial are given by

bn =
2

N

N∑
n=0

′′f(xk)Tn(xk) [Extrema grid]. (97)

If the N degree polynomial QN(x), which interpolates to a given function f(x) at Chebyshev-
roots grid points (95) be defined as

QN(x) =
N∑

n=0

′cnTn(x),

where the ′ on the summation means that the first [c0T0] is to be divided by 1/2, then the
coefficients of the interpolating polynomial are given by

cn =
2

N + 1

N∑
n=0

f(xk)Tn(xk) [Roots grid]. (98)

Further, we say that the Chebyshev coefficients bn at (97) is the Trapezoidal rule, and cn
at (98) is the Rectangular or Midpoint rule of denoting the Chebyshev coefficients.

There is a well explainable reason behind the trapeziodal and midpoint rule nomenclature
of formulas (97) and (98). Recall that using the appropriate inner product, we already
have Chebyshev coefficients an for a given function f from an appropriate function class
as

an =
2

π

∫ 1

−1

f(x) · Tn(x)√
1− x2

dx

Here, after performing the substitution x = cos(θ), and using (94) we get the following
formula:

an =
2

π

∫ π

0

f(cos θ) · Tn(cos θ) dθ =
2

π

∫ π

0

f(cos θ) · cosnθ dθ. (99)

In (99), for periodic functions f(x), the integral when computed with the compact trape-
zoidal method of integration[7] fetches us the exact formula given by (97), and similarly
we get the formula (98) when we perform the compact midpoint rule of integration[7] to
compute (99). Hence, this equivalence makes this nomenclature sensible.

Checkpoint. The next set of questions that immediately emerge after the introduction of
this Chebyshev interpolation is how accurate is Chebyshev interpolation? Does it converge
over as wide a region as the usual Chebyshev expansion in which we compute a polynomial
approximation by integration instead of interpolation? From [7], and also from literature
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in general, we know that Gaussian Integration is the best method to compute integrals
out of all known methods. One one hand, it provides results with least error, on the
other it is computationally expensive too. The Trapezoidal Rule of integration is a very
crude approximation of inegrals with a relative accuracy of only O(h2) for general, i.e.,
for non-periodic functions. For periodic f(x), however, the Trapezoidal Rule is equivalent
to Gaussian integration. The following theorem, borrowed from [5] provides some clarity
and reasoning on selecting the Trapezoidal rule and the Midpoint rule over Gaussian
integration.

Theorem 4.2.6. Periodic Gaussian Quadrature The Composite Trapezoidal Rule
and Composite Midpoint Rule, situationally, are both a Gaussian quadrature in the sense
that these formulas are exact with N points for trigonometric polynomials of degree 2N−2.

Note that the usage of the terminology “a Gaussian” quadrature is typically vague but
necessary because there are actually two useful Gaussian quadratures associated with
each basis. In the Fourier case, one can use either the Trapezoidal Rule or the Midpoint
Rule; which are equally accurate. The Trapezoidal Rule, as used in the above, is the
default choice, but the Midpoint Rule (or Rectangle Rule), which does not include either
endpoints x = 0 or x = 2π as grid points, is convenient when solving differential equations
which have singularities at either of these endpoints.

4.3 Numerical Experiment

We consider different functions on the interval I and then conduct numerical experiments
to approximate a given function f using discrete Chebyshev coefficients (midpoint rule),
so that we could comment on the order of convergence of Chebyshev approximation. Our
main aim is to numerically validate important theoretical results concerning the variance
of order convergence of Chebyshev coefficients along with the function class from which
functions are being approximated. The experiments were conducted in a system with
machine epsilon, ε = 2.220446049250313e− 16.

Just to recall and for the sake of a mention, the code chunk in Listing(1) in principle
computes discrete Chebyshev coefficients using the following formula

cn =
2

N

N−1∑
i=0

f(cos
(2i+ 1)π

2N
) cos

(2i+ 1)nπ

2N
n = 0, 1, · · · , N − 1.

4.3.1 Fast computation of polynomials & Clenshaw Algorithm

Now that a good approximation of Chebyshev coefficients has already been fixed, the next
thing to focus on are methodologies implying fast evaluation of polynomials, particularly
in our case, a truncated Chebyshev expansion or a Chebyshev polynomials. In general,
let Pn denote the space of all real algebraic polynomials up to degree n ∈ N0,

p(x) := p0 + p1x+ · · ·+ pnxn, x ∈ [a, b],
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where [a, b] ⊂ R is a compact interval. [21], [7] discussed in detail the theory of Horner’s
Scheme of fast evaluation of polynomials. Its purpose is to compute any arbitrary poly-
nomial, as above, with real coefficients pk, k = 0, · · · , n, at a certain point x0 ∈ [a, b]
by a low number of arithmetic operations. The main idea behind the algorithm is to
write p(x0) in the form of nested multiplications in order to reduce the number of needed
multiplications, as follows

p(x0) = p0 + x0

(
p1 + x0

(
p2 + x0

(
· · · (pn−1 + x0pn) · · ·

)))
.

All of this leads us to the popular Horner Scheme, Algorithm(2).

Evidently, the monomials xk, k = 0, · · · , n, form a simple basis of Pn. Unfortunately,
from a numerical point of view the monomial basis is undesirable. Thus, we are interested
in another basis of Pn which is more convenient for numerical calculations. Using the
Chebyshev polynomials, such a basis of Pn can be formed by the polynomials

T
[a,b]
k (x) := Tk(

2x− a− b

b− a
), k = 0, · · · , n.

Hence, using this formula we obtain the following shifted Chebyshev polynomials

T
[0,1]
k := Tk(2x− 1).

Recall that, the following three-term recurrence relation is satisfied by Chebyshev poly-
nomials

Tn+1(x) = 2x · Tn(x)− Tn−1(x), n ∈ N. (100)

Inspired from the Horner scheme, we iteratively try to reduce the degree of p(x) by means
of the recursion formula (100). Assume that n ≥ 5 and cn ̸= 0. Applying (100) to Tn in
the form of QN in Definiton(4.2.5), we obtain

p(x0) =
1

2
a0 +

n−3∑
k=1

akTk(x0) + (an−2 − bn)Tn−2(x0) + bn−1Tn−1(x0)

with bn := an and bn−1 := 2x0bn+an−1. Again applying (100), we can continue recursively,
and hence can conclude that this Cleshaw Algorithm, Algorithm(1) is an analogon of
Horner Scheme, Algorithm(2).

Algorithm 1: Clenshaw Algorithm

Data: n ∈ N \ {1}, x0 ∈ I, ak ∈ R for k = 0, 1, · · · , n.
Result: p(x0) ∈ R.

1 Set bn+2 = bn+1 := 0 and calculate recursively;
2 while j = 0, 1, ..., n do
3 bn−j := 2x0bn−j+1 − bn−j+2 + an−j.
4 end
5 Form p(x0) :=

1
2
(b0 − b2).

6 Computational Cost: O(n).
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4.3.2 Implementations: code

Here are the crucial code chunks on which the numerical experiments are mostly based,
implementations of Chebyshev coefficient calculation with the roots grid and the Clen-
shaw Algorithm.

1 # Python code chunk used in the numerical experiment ...

2

3 def mapper(x, min_x , max_x , min_to , max_to):

4 return (x - min_x) / (max_x - min_x) * (max_to - min_to) + min_to

5

6 def cheb_coef(func , n, min , max):

7 coef = [0.0] * n

8 for i in range(n):

9 f = func(mapper(math.cos(math.pi * (i+0.5)/n), -1, 1, min , max)

) * 2/n

10 for j in range(n):

11 coef[j] += f * math.cos(math.pi * j * (i+0.5)/n)

12 return coef

Listing 1: Computing Chebyshev coefficients using composite midpoint rule (97).

1 # Python code chunk used in the numerical experiment ...

2

3 def cheb_approx(x, n, min_ , max_ , coef):

4 a = 1

5 b = mapper(x, min_ , max_ , -1, 1)

6 c = float(’nan’)

7 res = coef [0] / 2 + coef [1] * b

8

9 x = 2 * b

10 i = 2

11 while i < n:

12 c = x * b - a

13 res = res + coef[i] * c

14 (a, b) = (b, c)

15 i += 1

16

17 return res

Listing 2: Code chunk for Clenshaw Algorithm.

4.4 Chebyshev series: convergence & errors

The impending problem associated with approximation is : Given f ∈ Ck[a, b], (be it
periodic or non-periodic) what is the rate with which error of the best approximation, i.e,

inf
pn∈Pn

∥f − pn∥∞

converges to zero as n→ ∞ ?
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The answer in general is credited to Dunham Jackson, for the so called Jackson’s The-
orem(4.4.2) which is a classic theorem in Approximation Theory[4],[18]. It shows that
the decay rate of the error depends on the extent of smoothness of the given function f .
Later, it was due to Bernstein that the answer became sharper.

Theorem 4.4.1. Jackson’s Theorem for 2π periodic functions Let k run over N
and f ∈ Ck

2π[a, b]. Then

inf
pn∈Tn

∥f − pn∥∞ ≤
( π

2(n+ 1)

)k
∥f (k)∥∞.

Theorem 4.4.2. Jackson’s Theorem Let n, k be integers with n ≥ k − 1 ≥ 0 and
f ∈ Ck[−1, 1]. Then

inf
pn∈Pn

∥f − pn∥∞ ≤
(π
2

)k 1

(n+ 1) · · · (n− k + 2)
∥f (k)∥∞.

In the first chapter, we had seen that for a sufficiently smooth 2π-periodic function f , its
Fourier series converges uniformly and absolutely to itself on T. Since Chebyshev series
is a Fourier cosine series in disguise, this intuitively clarifies the absolute and uniform
convergence of the Chebyshev series of a sufficiently smooth function f to itself on I.

Theorem 4.4.3. Bernstein For T = [−π, π], let f ∈ Cr(T) with fixed r ∈ N be given.
Then the approximation error f − Sf

n can be estimated for all n ∈ N \ {1} by

∥f − sfn∥ ≤ c∥f (r)∥C(T)
ln r

nr
,

where the constant c > 0 is independent of f and n.

In practice, the above convergence result(4.4.3) of a Fourier series is for a sufficiently
smooth, 2π-periodic function is very useful. The proof can be found at [21]. Now if a
given function f ∈ Cr(I) with r ∈ N, then the even function φ = f(cos ·) is contained in
Cr(T). By Theorem(4.4.3), we have

lim
n→∞

nr−1∥φ− sφn∥C(T) = 0.

Using the result[21], φ − sφn = f − cfn, we can conclude this discussion and present it as
the following theorem.

Theorem 4.4.4. For f ∈ C1(I), its corresponding Chebyshev series converges absolutely
and uniformly on I to f . If f ∈ Cr(I), for r ∈ N, then we have

lim
n→∞

nr−1∥f − cfn∥C(I) = 0,

where cfn is the corresponding Chebyshev partial sum of f .

Theorem(4.4.4) says about the uniform convergence of Chebyshev series, which here is
important in the context as this enables us to change the metric to compute error in
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approximation. Previously, we had considered the appropriate L2-norm of the difference
in approximation as the error, but now we can conveniently use the discrete l∞-norm
for computing the error in approximation, which in return should facilitate a proper
calculation of the order of convergence.

Using the above Theorem(4.4.4), we get that if a given function f ∈ Cr+1(I) for a certain
r ∈ N, then for any given ϵ > 0, ∃ n0 ∈ N ∋ ∀n ≥ n0 we have

∥f − cfn∥C(I) <
ϵ

nr
.

In [19], the above result has been presented in the form of the following theorem.

Theorem 4.4.5. If the function f(x) has m + 1 continuous derivatives on I , then
|f(x)− cfn(x)| = O(n−m) for all x ∈ I.

Qualitatively, we can comment that by virtue of Theorem(4.4.4), if the error in Chebyshev
approximation ∥f−cfn∥C(I) is denoted as En, then the extent of smoothness of the sample
function directly affects the speed at which the approximation converges. Basically, the
smoother the function, the faster the approximation process converges to a minimum
plausible approximation error En. In particular, the smoother a function f : I → R,
the faster its Chebyshev series converges uniformly to f . We can sharpen the above
conclusion by re-mentioning a result, i.e, theoretically the Chebyshev approximation done
using coefficients generated by Chebyshev roots grid(97), converges exponentially fast for
periodic smooth functions. Note that, across all the numerical results from Table(4) to
Table(15), the phenomenon of gradual drop in error of Chebyshev approximation En with
increasing n for each of the corresponding functions can be answered by Theorem(4.4.4).

Numerically, these can be seen through the results presented in Section(3.6). Observe
that for functions xm|x| ∈ Cm(I), an e−03 order accuracy is obtained for Chebyshev
approximation with 128 terms for the function |x|. On the other hand, the same order
accuracy has been achieved by only 8 terms of Chebyshev series for the function x7|x|;
not to mention that the Chebyshev series of x7|x| with 128 terms gives an e−14 order
accuracy.

Theorem 4.4.6. Last-Coefficient Error Bound Theorem The truncation error
has the same order-of-magnitude as the last coefficient retained in the truncation for
Chebyshev series, that is,

En ∼ O(|an|).

In principle, the ultimate trial of any numerical solution is to repeat the relevant calcula-
tions with different N and compare the corresponding results. The above Theorem(4.4.6)
is not intended to be a substitute for that[5]. Instead, it has two major purposes when
seen as a ’rule-of thumb’ for numerical experiments. First of all, it provides a quick-
and-untidy way of estimating the approximation error En from a single calculation, that
is, if the last retained coefficient is not small in comparison to the desired approxima-
tion error, then we need larger N . If it is small, and the lower coefficients decrease
smoothly towards an, then the calculation is most probably alright. Secondly, it provides
order-of-magnitude guidelines for estimating the feasibility of a calculation. Without such
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guidelines, one would waste lots of time by attempting problems which far exceed the
available computing power. Quantitatively, Theorem(4.4.6) can be validated through the
entries in Experiment Set A.

Definition 4.4.7. Order of Convergence for Ck(I) For an algorithm or an iterative
process, we define a constant called the order of convergence µ such that for the error at
the nth step the following holds

|En| ∼
1

nµ
.

The Jackson’s Theorem(4.4.2),(4.4.5) and Bernstien’s Theorem(4.4.3), we can clearly
anticipate the order of convergence for a given function f with known function class. In
our context of all numerical experiments in Experiment Set A, analytically we have the
following information, which is verified through the results data in the next section :

f(x) k for Ck(I) µ

x3 sin 1/x 1 –
x5 sin 1/x 2 1
x7 sin 1/x 3 2
x9 sin 1/x 4 3
x11 sin 1/x 5 4
x13 sin 1/x 6 5

Table 2: Actual data about input
functions of Chebyshev Approximation
Experiment Set A.

f(x) k for Ck(I) m for Cm
p (I) µ

|x| 0 1 –
x|x| 1 2 2
x2|x| 2 3 3
x3|x| 3 4 4
x6|x| 6 7 7
x7|x| 7 8 8

Table 3: Actual data about input func-
tions of Chebyshev Approximation Experi-
ment Set B.

The reason for us to not being able to anticipate the order of convergence, µ for the
instances mentioned in the first row of Table(2) and Table(3) lies in the hypothesis of
Theorem(4.4.5). Clearly, the theorem only says about functions from C2(I) and its
subspaces and it does not gaurantee anything about functions from C1(I) and C0(I).
This also becomes a selling point of the numerical experiments we perfom, as in the
cases when a result cannot be determined by theoretical analysis numerical analysis may
determine it, although without a proof!

4.5 Some more results

Similarly as done in Section(1.14) for Fourier series, in this section we discuss some sig-
nificant results related to the Chebyshev series of a function without going through their
detailed proofs. significant topics discussed includes Minimax Approximation property
of Tn, observation of Gibbs Phenomenon in Chebyshev Approximation, and Order of
convergence µ for Ck

p (I) functions, i.e, piecewise smooth functions.
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4.5.1 Minimax Approximation Property

One area above all in which the Chebyshev polynomials Tn have a pivotal role is the
minimax approximation of functions by polynomials. Hence, we will begin by review-
ing some basic concepts of Approximation Theory before stating the main result. The
main principle of approximation theory is to be able to replace any given function f by
much a simpler form, such as a polynomial (mostly truncated expansion representations),
chosen to have values not necessarily identical with but very close to those of the given
function, since such an ‘approximation’ may not only be more compact to represent and
store the given function computationally, but also more efficient to evaluate or otherwise
manipulate.

Definition 4.5.1. Approximation Space For a known function class F and a given
function f ∈ F to be approximated, we define a family A of all possible approximations
f ∗(x) to the given function f(x).

Example. We might choose our approximation from one of the following families:

1. Polynomials of degree n, where

A = {f ∗(x) = pn(x) = c0 + c1x+ · · ·+ cnx
n} (parameters cj).

2. Rational functions of type (p, q), where

A =
{
f ∗(x) = rp,q(x) =

a0 + a1x+ · · ·+ apx
p

1 + b1x+ · · ·+ bqxq

}
(parameters aj, bj).

3. Trigonometric Polynomials of degree 2n, where

A = {f ∗(x) = tn(x) = a0 + a1 sinx+ · · ·+ an sinnx+ b1 cosx+ · · ·+ bn cosnx}
(parameters aj, bj).

Now we can mention a rule-of-thumb for numerical puroses. A also forms a function
space. The rule-of-thumb is to choose the approximation space such that A ⊂ F , where
the given function f ∈ F . In contrast to F , A is a finite dimensional function space, its
dimension being the number of parameters in the form of approximation and Parseval’s
Identity of Chebyshev series.

Now that we have defined approximation space, we are in a good shape to define and state
what usually is called an approximation problem. The definiton arises from the need to
check the quality of approximation to be done for a given function f(x). In practice there
are three types of approximation that are commonly aimed for.

Definition 4.5.2. Let F be a normed linear space, let f(x) in F be given, and let A be
a given subspace of F .

1. An approximation f ∗(x) in A is said to be good (or acceptable) if

∥f − f ∗∥ < ϵ

for any given ϵ > 0. ϵ denotes the desired level of absolute accuracy.
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2. An approximation f ∗
B(x) in A is a best approximation if, for any other approxima-

tion f ∗(x) in A, we have
∥f − f ∗

B∥ ≤ ∥f − f ∗∥.
Note that there will sometimes be more than one best approximation to the same
function.

Recall that, in the case Fourier series Theorem(1.14.5), that is, the Weierstrass Approxi-
mation Theorem for trigonometric polynomials says about the approximation problem of
the first type mentioned in Definition(4.5.2), with A as mentioned in the third example
above. Also, the least square property(26) as mentioned in Section(1.14) of Chapter(1)
basically discusses an approximation problem of the second type, with same A.

Further, for a given norm ∥ · ∥ (such as ∥ · ∥∞, ∥ · ∥2 or ∥ · ∥1), a best approximation of
the second type as defined in Definition(4.5.2), is a solution of the problem

minimize
f∗∈A

∥f − f ∗∥.

In the case of polynomial approximation, to which we now restrict our attention, we may
rewrite the above expression in terms of the parameters as

minimize
c0,··· ,cn

∥f − pn∥.

Note that the Weierstrass Approximation Theorem[13] guarantees in particular the ex-
istence of a unique best approximation in the L∞ or minimax norm. The best L∞ or
minimax approximation problem is (in concise notation)

minimize
c0,··· ,cn

max
a≤x≤b

|f(x)− pn(x)|.

The Weierstrass Approximation Theorem does provide an existence of a best polynomial
approximation, but it can be sharpened in the form of the following powerful theorem,
which we borrow from [19].

Theorem 4.5.3. Alternation theorem for polynomials For any f(x) in C[a, b] a
unique minimax polynomial approximation pn(x) exists, and is uniquely characterised by
the ‘alternating property’ that there are n+2 points (at least) in [a, b] at which f(x)−pn(x)
attains its maximum absolute value (namely ∥f − pn∥∞) with alternating signs.

Theorem(4.5.3), often ascribed to Chebyshev but more properly attributed to Borel,
asserts that, for pn to be the best approximation, it is both necessary and sufficient that
the alternating property should hold, that only one polynomial has this property, and
that there is only one best approximation. Note that similar to this, the Fourier series
solves the approximation problem in accordance to the celebrated theorem named the
Alternation theorem for trigonometric polynomials.

We have the following result as a corollary[19] to Theorem(4.5.3), which answers that
a truncated Chebyshev series, as a polynomial approximation solves the minimax poly-
nomial approximation problem. Its interpretation shares genesis from Theorem(4.2.4),
stated above.
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Corollary 4.5.4. The minimax polynomial approximation of degree n−1 to the function
f(x) = xn on I is

pn−1(x) = xn − 21−nTn(x).

Further, 21−nTn(x) is the minimax approximation on I to the zero function by a monic
polynomial of degree n.

(a) Plot for the signum function and its Cheby-

shev partial sum cf8 .

(b) Plot for the signum function and its Cheby-

shev partial sum cf16.

Figure 15: Plot for functions with sharp points & discontinuity and their respective
Chebyshev partial sum [Discrete Chebyshev coefficients].

Note that not only the Sturm Oscillation Theory discussed in Chapter(2), Theorem(4.5.3)
can also be aided and made intuitively clear with the help of the following lemma. Its
effect can be seen in the Chebyshev Approximation of the signum function as shown
in Figure(15). We can see that in both the plots, the truncated Chebyshev expansion
coincides with the function exactly at the corresponding n+ 1 points.

Lemma 4.5.5. Alternating property of Tn(x) On I, Tn(x) attains its maximum
magnitude of 1 with alternating signs at precisely n+ 1 points namely at the points

xk =
cos kπ

n
, k = 0, 1, · · · , n.

Proof. Due to the strong relation (94), and the fact that cosnθ attains its maximum
magnitude of unity with alternating signs at its extrema points, we get what we wanted
to proof. This completes the proof.

4.5.2 Order of convergence µ for Ck
p (I)

Although we have Theorem(4.4.5) for anticipating the order of convergence µ for Ck(I)
functions, but in this section we will mention and discuss some results which sharpens this
theorem for Ck

p (I) functions, i.e., piecewise k-times continuously differentiable functions.

We invoke the exact same computations done by us in Section(1.5) of Chapter(1). The
methodology is to repeatedly perform integration by parts. For a convenient demonstra-
tion let us assume that the given function belongs to C2

p(I), i.e., the function is 2 times
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piecewise continuously differentiable, and since we are working in a compact interval let
us assume that λ2 = sup |f ′(x)| ∀x ∈ I. We have seen that the Chebyshev coefficient are
of the following form due to (94)

cfn =

∫ π

0

f(cosx) · sinnx dx

= − 1

n
f(cosx) · sinnx

∣∣π
0︸ ︷︷ ︸

vanishes

− 1

n

∫ π

0

f ′(cosx) sinx · sinnx dx

= − 1

n
f ′(cosx)

∫ π

0

sinx · sinnx dx︸ ︷︷ ︸
vanishes as the integral goes to 0

+
1

n

∫ π

0

f ′′(cosx) sinx
[cosx · sinnx− n sinx · cosnx

n2 − 1

]
dx︸ ︷︷ ︸

O( 1
n3 )

Thus, using Theorem(4.4.6) we can present the implication of these calculation in the
form of the following theorem.

Theorem 4.5.6. Order of Convergence for Ck
p(I) If the given function f ∈ Ck

p (I),
then the error in approximation of the Chebyshev approximation is

|En| ∼ O(|an|) ∼ O 1

nk
.

Hence, the order of convergence for such functions will be k.

One can easily validate the above mentioned Theorem(4.5.6), through the numerical
data presented under the Experiment Set B in the upcoming section, where functions
considered piecewise smooth of some extent.

4.5.3 Occurence of Gibbs Phenomena

Note that, the Gibbs Phenomenon discussed in Section(1.14) for Fourier partial sums can
also be seen qualitatively in both the plots of Figure(15) for Chebyshev partial sums of
the signum function. It makes sense as a Chebyshev series is in principle a Fourier Cosine
series. By ‘qualitatively’, we mean the uneven oscillations near both end-points.
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4.6 Numerical results

4.6.1 Experiment Set A

n ∥f − cfn∥∞ |an| µn

2 8.31e-01 2.18e-02 –
4 4.61e-01 2.23e-01 8.50e-01
8 4.11e-02 8.78e-02 3.49e+00
16 9.18e-11 1.98e-12 2.87e+01
32 2.63e-11 7.20e-13 1.80e+00
64 8.93e-13 5.52e-14 4.88e+00
128 1.19e-14 3.57e-16 6.23e+00

Table 4: x13 sin 1/x.

n ∥f − cfn∥∞ |an| µn

2 8.20e-01 4.37e-02 –
4 3.95e-01 2.61e-01 1.05e+00
8 2.21e-02 7.58e-02 4.16e+00
16 1.19e-08 3.67e-10 2.08e+01
32 2.39e-09 1.05e-10 2.32e+00
64 1.94e-11 3.50e-12 6.94e+00
128 1.03e-12 1.52e-14 4.23e+00

Table 5: x11 sin 1/x.

n ∥f − cfn∥∞ |an| µn

2 7.98e-01 8.73e-02 –
4 3.19e-01 3.06e-01 1.32e+00
8 7.81e-03 5.73e-02 5.35e+00
16 9.72e-07 4.77e-08 1.30e+01
32 1.01e-07 9.55e-09 3.27e+00
64 3.27e-09 5.85e-11 4.94e+00
128 1.49e-10 1.97e-12 4.46e+00

Table 6: x9 sin 1/x.

n ∥f − cfn∥∞ |an| µn

2 7.54e-01 1.75e-01 –
4 2.29e-01 3.58e-01 1.72e+00
8 1.29e-04 3.12e-02 1.08e+01
16 3.99e-05 3.89e-06 1.69e+00
32 1.40e-06 4.02e-07 4.83e+00
64 1.81e-07 1.12e-08 2.96e+00
128 1.46e-08 4.55e-10 3.63e+00

Table 7: x7 sin 1/x.

n ∥f − cfn∥∞ |an| µn

2 6.67e-01 3.49e-01 –
4 1.25e-01 4.17e-01 2.42e+00
8 3.88e-03 5.15e-04 5.01e+00
16 5.70e-04 1.60e-04 2.77e+00
32 1.13e-04 1.54e-06 2.34e+00
64 1.35e-05 6.87e-07 3.07e+00
128 2.72e-06 4.72e-08 2.31e+00
256 5.77e-07 2.36e-09 2.24e+00
512 9.60e-08 2.66e-10 2.59e+00

Table 8: x5 sin 1/x.

n ∥f − cfn∥∞ |an| µn

2 4.62e-01 7.80e-02 –
4 4.34e-02 1.86e-01 3.41e+00
8 2.30e-02 2.69e-02 9.16e-01
16 1.03e-02 1.59e-03 1.17e+00
32 3.07e-03 1.63e-04 1.74e+00
64 7.95e-04 1.90e-04 1.95e+00
128 4.50e-04 4.06e-05 8.23e-01
256 1.55e-04 8.79e-06 1.54e+00
512 7.57e-05 1.54e-06 1.03e+00

Table 9: x3 sin 1/x.

‡ All the numerical experiments done during the span of this project can be found at the

GitHub Repo with the link - https://github.com/Shubhajit412/THEORETICAL-AND-COMPUTATIO

NAL-CONSIDERATIONS-OF-STURM-LIOUVILLE-SYSTEMS.
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4.6.2 Experiment Set B

n ∥f − cfn∥∞ Order of Convergence

2 9.12e-01 –
4 3.07e-01 1.57e+00
8 2.84e-03 6.75e+00
16 1.16e-06 1.13e+01
32 3.06e-09 8.57e+00
64 1.09e-11 8.14e+00
128 4.11e-14 8.04e+00

Table 10: x7|x|.

n ∥f − cfn∥∞ Order of Convergence

2 9.12e-01 –
4 3.07e-01 1.57e+00
8 3.62e-03 6.41e+00
16 4.87e-06 9.54e+00
32 2.90e-08 7.39e+00
64 2.12e-10 7.09e+00
128 1.62e-12 7.03e+00

Table 11: x6|x|.

n ∥f − cfn∥∞ Order of Convergence

2 6.46e-01 –
4 5.97e-02 3.44e+00
8 1.12e-03 5.74e+00
16 5.49e-05 4.35e+00
32 3.26e-06 4.07e+00
64 2.01e-07 4.02e+00
128 1.25e-08 4.00e+00

Table 12: x3|x|.

n ∥f − cfn∥∞ Order of Convergence

2 6.46e-01 –
4 9.57e-02 2.76e+00
8 5.72e-03 4.06e+00
16 6.27e-04 3.19e+00
32 7.60e-05 3.05e+00
64 9.40e-06 3.01e+00
128 1.16e-06 3.02e+00

Table 13: x2|x|.

n ∥f − cfn∥∞ Order of Convergence

2 2.93e-01 –
4 3.81e-02 2.94e+00
8 7.58e-03 2.33e+00
16 1.78e-03 2.09e+00
32 4.39e-04 2.02e+00
64 1.09e-04 2.01e+00
128 2.72e-05 2.01e+00

Table 14: x|x|.

n ∥f − cfn∥∞ Order of Convergence

2 7.06e-01 –
4 2.70e-01 1.39e+00
8 1.26e-01 1.09e+00
16 6.18e-02 1.03e+00
32 3.03e-02 1.03e+00
64 1.46e-02 1.05e+00
128 6.84e-03 1.10e+00

Table 15: |x|.

‡ All the numerical experiments done during the span of this project can be found at the

GitHub Repo with the link - https://github.com/Shubhajit412/THEORETICAL-AND-COMPUTATIO

NAL-CONSIDERATIONS-OF-STURM-LIOUVILLE-SYSTEMS.
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Appendices

I Supplementary pertinent theorems and lemmas

I.I Some Comparison theorems on first-order DEs

It is a well-established fact that most DEs cannot be solved in terms of elementary
functions, so it becomes important to be able to comapre unknown non-trivial solutions
of one DE with some known non-trivial solution of another. In this section we present
some useful comparison theorems on DEs, which vcan be used as efficient tools in solving
relevant problems. Proofs of the following results are omitted here, but can be found at
[2]-page29.

Definition I.I.I. A function F (x, y) is said to satisfy a Lipschitz condition in a do-
main D when, for some finite non-negative constant L (Lipschitz constant), the inequality

|F (x, y2)− F (x, y1)| ≤ L|y2 − y1|

holds for all pairs (x, y2) and (x, y1) in D having the same x-coordinate.

Lemma I.I.II. Let F be continuously differentiable in a bounded closed convex domain
D. Then it satisifes a Lipschitz condition there, with L = supD |∂F

∂y
|.

Theorem I.I.III. We consider two DEs in the interval (a, b),

y′ = F (x, y), y′1 = G(x, y1)

such that F ≤ G. Let G satisfy a Lipschitz condition for x ≥ a. If f and g are some
non-trivial solutions of the first and second DEs above, respectively satisfying the initial
condition g(a) = f(a), then f(x) ≤ g(x) for all x ≥ a.

Theorem I.I.IV. Let f and g be two non-trivial solutions of the following DEs,

y′ = F (x, y), z′ = G(x, z)

respectively, where F (x, y) ≤ G(x, y) in the closed interval [a, b] and both F and G satisfy
a Lipschitz condition. If the intial condition f(a) = g(a) is satisfied, then ∀x ∈ [a, b], we
have f(x) ≤ g(x).

Theorem(I.I.III) can be sharpened in the form of the following corollary.

Corollary I.I.V. In theorem(I.I.III), we assume that along with G, F too satisfies a
Lipschitz condition and instead of f(a) = g(a), we assume the intial condition f(a) <
g(a). Then f(x) < g(x) for all x > a.

Corollary I.I.VI. In Theorem(I.I.IV), if additionally we have f(b) = g(b), then f(x) ≡
g(x) for all x ∈ [a, b].
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I.II An alternate qualitative analysis on zeroes of eigenfunctions

Section(3.1) discusses things of the same genre as of the contents of this section. Here,
we will go through similar results and try to present their proofs a bit differently. Well,
by now it is evident and also it has been mentioned several times that DEs of the type

y′′ + q(x)y′ + r(x)y = 0, ∀x ∈ I, (101)

explicitly so that one can study the properties of its solutions. We shall see ahead, how
the coefficients q(x) and r(x) affect the way the zeroes of non-trivial solutions of DEs like
(101) behave. We will use the concept of the Wronskian[2]-page43.

Suppose at a certain point x0 in the interval I, we have y(x0) = 0, where y is a solution
of DE(101). If y′(x0) ̸= 0, as by uniqueness theorem it would imply y to be the trivial
solution. Now as y′ is continuous on I, there exists a neighborhood U of x0 where y

′ ̸= 0
on U ∩ I. Thus, y is either strictly increasing or strictly decreasing on U ∩ I. Using
definiton(2.4.3), we can conclude that, if y is a non-trivial solution of DEs like (101),
then the zeroes of y are isolated in I.

Now, say y1 and y2 are two non-trivial linearly independant solutions of (101). It follows
that, their Wronskian

W (y1, y2)(x) = y1(x)y
′
2(x)− y2(x)y

′
1(x)

does not vanish on the interval I, and thus has one sign on I. This also tells us that, both
y1 and y2 cannoit have a common zero. Let us assmue that x1 and x2 are two consecutive
zeroes of y2. Then, it is clear that

W (x1) = y1(x1)y
′
2(x1) ̸= 0,

W (x2) = y1(x2)y
′
2(x2) ̸= 0.

Therefore, the values y1(x1), y1(x2), y
′
2(x1) and y

′
2(x2) are all non-zero. Since y′2 is con-

tinuous on I, x1 has a neighborhood U1 where the sign of y′2 does not change. Similarly
for x2 there is a neighborhood U2 where y′2 does not change its sign. Continuity of y2
says that if y2 is increasing on a neighborhood of one root then it has to be decreasing
on a neighborhood of the other, hence the signs of y′2 in U1 ∩ I and U2 ∩ I cannot be the
same. Now, for W (x) to have a constant sign on I, y1(x1) and y1(x2) must have opposite
signs. Hence y1, being continuous, has at least one zero between x1 and x2.

Now say, x3 and x4 are two zeroes of y1 which lie between x1 and x2, we can employ
similar arguments to show that y2 vanishes between x3 and x4, which is a contradiction
to the assumption that x1 and x2 are successive zeroes of y2. Therefore, we can conclude
that y1 has exactly one zero between x1 and x2. This result is a well celebrated result in
the Theory of Sturm-Liouville Systems and is often presented as the following theorem.

Theorem I.II.I. Strum Separation Theorem If y1 and y2 are linearly independent
solutions of the equation(101), then the zeros of y1 are distinct from those of y2, and
the two sequences of zeros alternate. Precisely, y1 has exactly one zero between any two
successive zeros of y2, and viceversa.

Corollary I.II.II. If two non-trivial solutions of DE(101) have a common zero in I,
then they are linearly dependent.
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I.III Additional definitions & theorems

Definition I.III.I. A family of vector fields X(x, t) satisfies a Lipschitz condition in a
region R of (x, t)−space if and only if, for some Lipschitz constant L,

|X(x, t)−X(y, t)| ≤ L|x− y| if (x, t), (y, t) ∈ R

Theorem I.III.II. Let x(t) and y(t) satisfy the DEs

dx

dt
= X(x, t) and

dy

dt
= Y (y, t)

respectively, on a ≤ t ≤ b. Further, let the functions X and Y be defined and continuous
in a common domain R := D × [a, b], and let

|X(z, t)− Y (z, t)| ≤ ϵ, a ≤ t ≤ b, z ∈ D.

Finally, if X(x, t) satisfy the Lipschitz condition (I.III.I), then

|x(t)− y(t)| ≤ |x(a)− y(a)|eL|t−a| +
ϵ

L
[eL|t−a| − 1].

Note that in theorem(I.III.II), Y is not required to satisfy a Lipschitz condition. The
proof of (I.III.I) can be found at [2].

Theorem I.III.III. For fixed r ∈ N0, let f ∈ Cr+1(I) be given. Then for all n > r, the
Chebyshev coefficients of f satisfy the inequality

∥cfn∥ ≤ 2

n(n− 1) · · · (n− r)
∥f r+1∥C(I).

Proof of Theorem(I.III.III) is owed to [21], where it goes by Theorem 6.16 at page 319.

Theorem I.III.IV. Chebyshev Interpolation Error Bound If the N degree polyno-
mial PN(x), which interpolates to a given function f(x) at Chebyshev-extrema grid points
(96) be defined as

PN(x) =
N∑

n=0

′′bnTn(x),

where the ′′ on the summation means that the first and last terms are to be taken with a
factor of 1/2, then the coefficients of the interpolating polynomial are given by

bn =
2

N

N∑
n=0

′′f(xk)Tn(xk) [Extrema grid].
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If the N degree polynomial QN(x), which interpolates to a given function f(x) at Chebyshev-
roots grid points (95) be defined as

QN(x) =
N∑

n=0

′cnTn(x),

where the ′ on the summation means that the first [c0T0] is to be divided by 1/2, then the
coefficients of the interpolating polynomial are given by

cn =
2

N + 1

N∑
n=0

f(xk)Tn(xk) [Roots grid].

Let {αn} denote the exact spectral Chebyshev coefficients of f(x). Then for all N and all
real x ∈ [−1, 1], the errors in either of the interpolating polynomials is bounded by twice
the sum of the absolute values of all the neglected coefficients, basically

|f(x)− PN(x)| ≤ 2
∞∑

n=N+1

|αn|

|f(x)−QN(x)| ≤ 2
∞∑

n=N+1

|αn|.

Proof of Theorem(I.III.IV) is owed to [5], where it goes by Theorem 21 at page 97.

Theorem I.III.V. Let f ∈ Cr+1(I) for fixed r ∈ N be given. Assume that N ∈ N with
N > r. If the N degree polynomial QN(x), which interpolates to a given function f(x) at
Chebyshev roots grid points exactly as mentioned in Lemma(4.2.5), then we have

∥f(x)−QN(x)∥C(I) ≤
4

r(n− r)r
∥f r+1∥C(I).

From [5], we borrow the fact that for a function f the actual spectral Chebyshev coeffi-
cients {αf

n} are always less than the approximated Chebyshev coefficients {cfn}, that is,
αf
n < cfn. As a consequence of Theorem(I.III.III) and Theorem(I.III.IV) we get the above

Theorem(I.III.V).
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II Supplementary algorithms

Algorithm 2: Horner’s Scheme Algorithm

Data: n ∈ N \ {1}, x0 ∈ [a, b], pk ∈ R for k = 0, 1, · · · , n.
Result: p(x0) ∈ R.

1 Set qn−1 := pn and calculate recursively;
2 while j = 2, ..., n do
3 qn−j := pn−j+1 + x0qn−j+1.
4 end
5 Form p(x0) := p0 + x0q0.

6 Computational Cost: O(n).
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